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Abstract

The Classroom Observation Protocol for Undergraduate STEM (COPUS) provides

descriptive feedback to instructors by capturing student and instructor behaviors

occurring in the classroom. Due to the increasing prevalence of COPUS data collection,

it is important to recognize the means by which researchers determine whether groups

of courses or instructors have unique classroom characteristics. One approach utilizes

cluster analysis, highlighted by a recently developed tool, the COPUS Analyzer (Stains

et al., 2018), that enables the characterization of COPUS data into one of seven

clusters representing three groups of instructional styles (didactic, interactive, and

student-centered). Here, we present evidence that a predictive cluster analysis tool may

not be appropriate as a means to analyze COPUS data through the examination of a

novel 250 course dataset. We perform a de novo cluster analysis and compare results

to the COPUS Analyzer output, and in doing so identify a number of contrasting

outcomes regarding course characterizations. Additionally, we present two ensemble

clustering algorithms: (1) -means and (2) partitioning around medoids (PAM). Both𝑘

ensemble algorithms categorize our classroom observation data into one of two

clusters, traditional lecture or active learning. Finally, we discuss implications of these

findings for education research studies that leverage COPUS data.
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Introduction

A national focus on implementing evidence-based teaching practices to improve

the quality of Science, Technology, Engineering, and Mathematics (STEM) education

has been promoted by, among others, the National Research Council (NRC, 2012), the

President’s Council of Advisors on Science and Technology (PCAST, 2012), and the

Association of American Universities (AAU, 2019). These organizations highlight the

benefits of active learning pedagogies (Chickering & Gamson, 1987; Freeman et al.,

2014; Hake, 1998; Ong et al., 2011; Prince, 2004; Ruiz-Primo et al., 2001; Smith et al.,

2005; Tomkin et al., 2019) as practices that improve learning for all students, particularly

those from diverse backgrounds (Eddy & Hogan, 2014; Handelsman et al., 2004; Ong

et al., 2011; Theobald et al., 2020). 

Despite these findings, the implementation of evidence-based teaching practices

is generally not occurring widespread in STEM classrooms (Smith et al., 2014; Stains et

al., 2018). While professional development opportunities to train instructors in the use of

these practices are numerous, there is often a disconnect between the instructor

perception of their implementation of active learning pedagogies and what is actually

occurring in the classroom (Derting et al., 2016; Ebert-May et al., 2011). Thus, there is

value in classroom observation data that provide an objective way to identify what both

the student and instructor are doing within a classroom (Smith et al., 2013; Smith et al.,

2014). These observations give a more standardized assessment of the class

compared to surveys, responses to which may be influenced by student and instructor

3



interpretation or bias. These data can then be used in the assessment of the

effectiveness of instruction strategies.

Classroom Observation Data Collection and Analysis

A number of protocols have been developed over the past two decades to better

describe what is occurring within a higher education classroom (Frey et. al., 2016;

Owens et al., 2017; Reimer et al., 2016; Sawada et al., 2002). One of the most

commonly utilized is the Classroom Observation Protocol for Undergraduate STEM

(COPUS) (Akiha et al., 2017; Daher et al., 2018; Deligkaris & Chan, 2020; Jiang & Li,

2018; Liu et al., 2018; Ludwig & Prins, 2019; Lund et al., 2015, McVey et al., 2017;

Reisner et al., 2020; Riddle et al., 2020; Smith et al., 2013; Stains et al., 2018; Tomkin

et al., 2019; Weaver et al., 2015; Wieman & Gilbert, 2015; Wolyniak & Wick, 2019).

COPUS consists of twenty-five distinct codes that classify instructor and student

behaviors (see Table 1, taken from Smith et al., 2013) which are recorded in two-minute

intervals by observers. COPUS does not require observers to make judgments

regarding teaching quality, but rather categorizes classroom activities by “What the

instructor is doing” and “What the students are doing”.

Due to the increasing prevalence of COPUS data collection and presentation in

education research, it is important to consider how researchers analyze these data. The

most common tactic is to present COPUS data in a descriptive form, highlighting

particular codes of interest and often comparing the relative presence of these codes

between two scenarios (Akiha et al., 2017; Jiang & Li, 2018; Kranzfelder et al., 2019;
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Lewin et al., 2016; Liu et al., 2018; McVey et al., 2017; Reisner et al., 2020; Riddle,

2019; Smith et al., 2013; Solomon et al., 2018; Weaver et al., 2015). For example,

Lewin et al. (2016) highlighted the frequency of the “Instructor Lecturing” code for

classes that utilized clickers and those that did not. Akiha et al. (2017) examined the

frequency of various codes across middle school, high school, and undergraduate

courses and determined whether there were differences among classes at various

education levels using the Kruskal-Wallis test. It is also possible to take this analysis a

step further and incorporate multiple regression models to identify the impact of various

course or instructor characteristics on the presence of specific classroom practices. For

example, to assess the effectiveness of their professional development program,

Tomkin et al. (2019) identified differences in the utilization of various COPUS codes

between faculty who did and did not participate in the program using multiple linear

regression models, poisson regression models, and zero-inflated poisson regression

models with the individual codes serving as the outcome variables. A third technique

used to analyze COPUS data is cluster analysis. Cluster analysis is a data mining

technique which allows researchers to cluster a set of observations into similar

(homogenous) groupings based on a set of features. This has been utilized by the

Stains group (Lund et al., 2015; Stains et al., 2018), and enables researchers to

characterize a particular course based on the entirety of the collected COPUS data and

identify distinct patterns of classroom behaviors present across a data set. Additionally,

cluster analysis is used when researchers are in the exploratory phase of their analysis

(Kaufmann & Rousseeuw, 1990; Ng & Han, 1994) and allows for identifying groups of
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observations when you do not have a particular response variable of interest (Fisher,

1958; Hartigan & Wong, 1979; Hastie et al., 2001; Kaufmann & Rousseeuw, 1987;

MacQueen, 1967; Pollard, 1981).

As a product of their cluster analysis, Stains et al. (2018) generated a COPUS

Analyzer tool based on an original dataset of 2,008 individual class periods collected

from over 500 STEM instructors across at least 25 institutions in the United States. They

note that the COPUS Analyzer (http://www.copusprofiles.org/) “automatically classifies

classroom observations into specific instructional styles, called COPUS Profiles”.

Despite the ease of use of the COPUS Analyzer, we argue that this tool, or similar

clustering systems developed locally by education researchers based on prior collected

data sets, is not an appropriate means to evaluate and classify new COPUS data. Since

cluster analysis is a statistical learning algorithm that uses an unsupervised learning

technique (i.e. there is no outcome variable used in the analysis), clustering algorithms

are meant to be descriptive, not predictive. In general, clustering algorithms are able to

find locally optimal partitions and split the data into k clusters; new data incorporated

into an existing data set often result in different clusters being identified, and thus

clustering should not be used as a predictive tool (Ben-David et al., 2006; Fisher, 1958;

Gareth et al., 2013; Hartigan, 1975; Hartigan & Wong, 1979; Hastie et al., 2001; Wong,

1979). Due to this nature of cluster analysis, utilizing an existing cluster analysis to

predict the cluster that new COPUS data would fall into, could then potentially

incorrectly cluster that data. Mischaracterization of COPUS data could then lead to a

research team drawing flawed conclusions from that analysis.
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Study Aims

In this paper, we aim to explore whether different methods of clustering COPUS

data produce contrasting outcomes using a novel dataset from 250 unique courses.

Specifically, we will address the following questions:

1. Do clustering results for our dataset vary when utilizing the COPUS

Analyzer versus de novo cluster analysis guided by the parameters

established by the Analyzer?

2. How do de novo clustering results differ when the COPUS data are

transformed (i.e. combining the codes into a condensed set or using a

subset of the COPUS codes) in the various ways presented in the literature

prior to clustering?

3. How do de novo clustering results differ when utilizing -means algorithms𝑘

versus partitioning around medoids (PAM) algorithms?

Methods

Participants and Procedures

The COPUS data were collected across 250 courses during the fall (n = 70),

winter (n = 85), and spring (n = 95) quarters during the 2018-19 academic year at a

research-intensive university in the Western US. Observed courses were selected if

they were the following: lecture courses (excluding lab sections, discussions, and

seminar courses), undergraduate courses (graduate courses excluded), and courses

held in rooms with capacity for 60 students or greater. Courses were spread across

STEM and non-STEM disciplines (in this work, the traditional definition of STEM
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excluding social sciences is utilized), and were taught by a variety of faculty position

types (tenured and non-tenured, including research track and teaching track) who were

or were not Active Learning Certified, which means the instructor completed an 8-week

active learning professional development series offered by the study’s institution.

Descriptive information regarding the courses included in the study and the faculty

instructing them can be found in Table 2. Summary statistics for the individual COPUS

codes are in the supplemental materials (Table S1).

We documented classroom behaviors in 2-minute intervals throughout the

duration of the class session using the 25 COPUS codes. For each class session, we

created three different datasets as previously described; (1) we used the subset of

codes as described in Stains et al. (2018), (2) we collapsed the 25 codes into 8 codes

as described in Smith et al. (2014), and (3) we utilized all 25 COPUS codes (Smith et

al., 2013). Descriptions of each can be found in Table 1.

We also identified the COPUS profiles for each classroom session as reported by

the COPUS analyzer (http://www.copusprofiles.org/). The COPUS Analyzer provides

COPUS profiles that fall into one of seven clusters representing three groups of

instructional styles, which are characterized as didactic, interactive, and

student-centered. The didactic instructional style represents classes where more than

80% of the class period included the “Instructor Lecturing” code. The interactive

instructional style was characterized by course periods where instructors supplemented

lecturing with other group activities or clicker questions with group work. The

student-centered instructional style represents classes where even larger portions of the
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course period were dedicated to group activities relative to the interactive instructional

style.

Despite the fact the COPUS protocol was designed based on the observation of

STEM courses, we felt that it was appropriate to include non-STEM observation data for

a variety of reasons. One, because our dataset was restricted to large enrollment

lecture courses, this eliminated the presence of course types (for example, lab courses)

that are unique to STEM fields. Second, if a STEM lecture was inherently different from

a non-STEM lecture, we would expect to see unique distributions of STEM-specific

codes in our data set. We performed a 2-sample t-test for each of the 25 codes to test

for a difference in the amount of time spent on a certain code for STEM and non-STEM

classes and applied a Bonferroni correction to account for multiple testing setting

We found that of the 25 codes, COPUS code usage for STEM andα* =  0.05
25 = 0. 002.  

non-STEM courses differed for only 2 codes (“Student Individual Thinking/Problem

Solving” and “Instructor Real-time Writing on the Board”). These data are presented in

Table S2. Additionally, as it is not our goal to make pedagogical conclusions or

recommendations regarding the specific courses present in our data set, but instead to

utilize these data to make conclusions about methodologies for COPUS data analysis,

we felt it was appropriate to include both STEM and non-STEM courses.

Data Collection Procedures

Each course included in the study was observed twice within a quarter. A team of

10 COPUS observers were trained by a single individual. This training involved the
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description of the COPUS codes, hands on time with the Generalized Observation and

Reflection Platform (GORP – UC Davis, gorp.ucdavis.edu) which was used to collect

COPUS data, and presentation of lecture videos that observers used to practice

collecting COPUS data. Trained observers then completed 2-3 classroom observations

in pairs to ensure reliability between the two-raters of at least 90% and Cohen’s Kappa

above 0.85 for each pair.

Instructors were notified at the beginning of each academic term that they would

be observed during two lecture periods. Dates were assigned based on observer

availability without any prior knowledge regarding what would occur in that lecture

period. Observations were re-scheduled only if the originally selected date was an exam

day. Instructor and student codes were collected for each class period and then

summarized as percent of two-minute intervals during which a given code was

occurring. COPUS data for the two classroom observations for a given course were

averaged prior to data analysis. This study was approved by the University of California,

Irvine, Institutional Review Board as exempt (IRB 2018-4211).

Data Analysis

To characterize the types of instructional practices observed in our 250 course

dataset, we performed a variety of cluster analyses and compared them to the COPUS

profiles resulting from the COPUS Analyzer (http://www.copusprofiles.org/). To address

research question 1, we compared the COPUS profiles to a de novo cluster analysis

using the same restrictions established by Stains et al. (2018), including using the same

subset of codes (group worksheet, group other, group clicker, student question, work
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1-on-1, clicker question, teacher question, and lecture) and performing -means𝑘

clustering with = 7 using a Fisher’s Exact Test. To address research question 2, we𝑘

performed three separate -means algorithms; one on the Analyzer codes (group𝑘

worksheet, group other, group clicker, student question, work 1-on-1, clicker question,

teacher question, and lecture), one on the collapsed codes (instructor presenting,

instructor guiding, instructor administration, instructor other, student receiving, students

talking to the class, students working, and student other), and one on all 25 COPUS

codes. We compared the COPUS profiles to the de novo ensemble of the three 𝑘

-means algorithms using a Fisher’s Exact Test. To address research question 3, we

performed three separate PAM (Partitioning Around Medoids) algorithms; one on the

Analyzer codes, one on the collapsed codes, and one on all 25 COPUS codes. We

compared the de novo ensemble of the three -means algorithms to the de novo𝑘

ensemble of the three PAM algorithms using a Fisher’s Exact Test.

k-Means Clustering

In order to partition the data into distinct groups where the observations within

the subgroups are quite similar and the observations in different clusters are quite

different, we used -means clustering. This is a simple and elegant approach for𝑘

partitioning a data set into distinct, non-overlapping clusters (James et al., 2013).𝑘 𝑘

-means clustering is an unsupervised statistical learning technique that does not require

the data to have a response variable (Fisher, 1958; Hartigan & Wong 1979; MacQueen,

1967). Among all classroom observations, there is heterogeneity across the

observations, and we used clustering to find distinct homogeneous subgroups among

11



the COPUS observations. Our dataset includes = 250 classroom observations with𝑛 𝑝

equal to the number of COPUS features we are considering. For example, using the

collapsed codes we have = 8 features (instructor guiding, instructor presenting,𝑝

instructor administration, instructor other, student receiving, student talking, student

working, and student other).

To specify the desired number of clusters, , the NbClust package in R was used𝑘

(Charrad et al., 2014). This R package determines the relevant number of clusters in a

data set by performing 30 different indices (see Table S3 for a complete list) while

varying the cluster size and distance measures. For further discussion of the indices,

see Charrad et al. (2014). After determining the relevant number of clusters, the 𝑘

-means algorithm will assign each observation to exactly one of the clusters. -means𝑘 𝑘

clustering was performed using the stats package in R (R Core Team, 2018). -means𝑘

clustering partitions the observations into clusters such that the total within-cluster𝑘

variation, summed over all clusters, is as small as possible. That is, -means𝑘 𝑘

clustering solves the following minimization problem:

,

where C1,...,CK denote sets containing the indices of the observations in each cluster, 𝑝

is the number of features, and is the number of clusters. The algorithm for -means𝐾 𝑘

clustering is as follows: (1) randomly assign a number, from 1 to , to each of the𝑘

observations. These serve as initial cluster assignments for the observations. (2) Iterate
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until the cluster assignments stop changing: (2a) for each of the clusters, compute the𝑘

cluster centroid. The th cluster centroid is the vector of the feature means for the𝑘 𝑝

observations in the th cluster. (2b) Assign each observation to the cluster whose𝑘

centroid is closest (where closest is defined using Euclidean distance). We used 20

random starts for the -means clustering algorithm, since it is suggested to have the𝑘

number of random starts to be greater than 1 (Gareth et al., 2013).

Partitioning Around Medoids Clustering

Partitioning around medoids (PAM) is a more robust method to cluster data

compared to the more commonly used -means algorithm (Kaufman & Rousseeuw𝑘

1987; Kaufman & Rousseeuw, 1990; Ng & Han, 1994). The main difference between

the -means algorithm and the PAM algorithm is that in the PAM algorithm, a data point𝑘

within the cluster defines the medoid, whereas in -means, the cluster center is the𝑘

average of all the data points. The algorithm follows the work of Conrad and Bailey

(2015) and uses the cluster (Maechler et al., 2018) and randomForest (Liaw & Wiener,

2002) package in R. The PAM analysis proceeds as follows: (1) unsupervised Random

Forests (RF) is used to generate a proximity matrix using the COPUS variables; (2)

PAM uses the dissimilarity matrix (1-proximity) to cluster the observations. RF

dissimilarity measures have been successfully used in several unsupervised learning

tasks (Breiman & Cutler, 2003; Hastie et al., 2001; Liu et al., 2000; Shi & Horvath,

2006). RF is a modern statistical learning method that involves a collection or ensemble

of classification trees. Each tree is grown based on a different bootstrap sample of the

original data. For the RF, each tree votes for a class and the final prediction for each
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observation is based on the majority rule. In unsupervised RF, synthetic classes are

randomly generated, and the trees are grown. Despite the synthetic classes, similar

samples end up in the same leaves due to the tree’s branching process. The proximity

of the samples can be measured, and the proximity matrix is constructed. In the second

step of the PAM analysis, the clustering is found by assigning each observation to the

nearest medoid with the goal of finding representative objects which minimize the sum𝑘

of the dissimilarities of the observations to their closest representative object (Maechler

et al., 2018). To determine the relevant number of clusters, the Silhouette index was

used (Rousseeuw, 1987).

Ensemble of Algorithms

Instead of relying on a single “best” clustering, we used an ensemble of

algorithms applied to our dataset, including both -means clustering ensemble of𝑘

algorithms and a PAM clustering ensemble of algorithms. We utilized the ensemble

method (Strehl and Ghosh, 2002), using the NbClust package in R to cluster our data

using different subsets of the COPUS codes to run multiple clusterings and then

combine the information of the individual algorithms. Use of the ensemble of algorithms

gives us a robust cluster assignment, as our cluster assignment does not rely on a

single choice of variables to input into the cluster, and the number of clusters does not

rely on a single choice for determining the best number of clusters. For classification, an

ensemble average will perform better than a single classifier (Moon et al., 2007). In the

educational literature, there have been a handful of applications of ensemble algorithms

(Beemer et al., 2018; Kotsiantis et al., 2010; Pardos et al., 2011).
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The -means ensemble and PAM ensemble are based on individual algorithms𝑘

that relied on different transformations of the COPUS codes; (1) we used the subset of

codes described in Stains et al. (2018), (2) we collapsed the 25 codes into 8 codes as

described in Smith et al. (2014), and (3) we utilized all COPUS codes (Table 1). The

final -means clustering ensemble gives each of the three individual -means𝑘 𝑘

algorithms a vote for the final cluster. The final PAM clustering ensemble gives each of

the three individual PAM algorithms a vote for the final cluster.

Results

RQ1. Do clustering results for our data set vary when utilizing the COPUS

Analyzer versus de novo cluster analysis guided by the parameters established

by the Analyzer?

To characterize the types of instructional practices observed in our 250 course

dataset, we performed a variety of cluster analyses. To start, we utilized the existing

COPUS Analyzer created by Stains et al. (2018). We first ran our COPUS data through

the COPUS Analyzer and compared these results to those obtained with a de novo

cluster analysis using the same restrictions set out by the work by Stains et al. (2018),

including the same subset of codes and performing -means clustering with = 7.𝑘 𝑘

These two means of clustering the COPUS data resulted in differing cluster patterns

(Table 3) with only 36% agreement between the two sets of clusters. Sending our data

through the COPUS Analyzer resulted in 42% of our classroom observations being

labeled didactic, 39% interactive, and 19% student-centered. The de novo cluster

analysis using our classroom observations gives a different breakdown of didactic
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(57%), interactive lecture (21%), and student-centered lecture (23%). The similarities in

the COPUS profiles and the de novo clustering varied by cluster. For example, 67% of

the cluster 1 (didactic instructional style) observations were clustered together in the de

novo clustering. On the other hand, for the 27% of our classroom observations that fell

into cluster 3 (interactive instructional style) by the COPUS analyzer, those 67

observations were split into 5 different clusters and had at most 30% of the observations

clustered together in the de novo clustering. And the observations falling under cluster 7

(student-centered instructional style) from the COPUS Analyzer were almost evenly split

in the de novo clustering. The instability of the clustering algorithm can be seen from the

very different results obtained when comparing the COPUS Analyzer and de novo

clustering using the same clustering technique ( -means clustering), the same number𝑘

of clusters ( = 7), and the same data (n = 250 classroom observations). Using a𝑘

Fisher’s Exact test for count data, we found that there was a significant difference in the

clustering results from the analyzer and our de novo cluster analysis (p = 0.004).

RQ2. How do de novo clustering results differ when the COPUS data are

transformed (i.e. combining the codes into a condensed set or using a subset of

the COPUS codes) in the various ways presented in the literature prior to

clustering?

We performed -means clustering with the data transformed into the Analyzer𝑘

codes (Stains et al., 2018), collapsed according to Smith et al. (2014), or left as the

original 25 COPUS codes. In each case, the optimal number of clusters for our data

was 2 (according to majority rule) (Table 4), as opposed to the seven identified from the
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Stains work (2018) (Figure 1). 86% of our classroom observations had perfect

agreement across the individual algorithms.

Cluster 1 can be characterized as a traditional lecture cluster; primarily driven by

the “Instructor Presenting” and “Student Receiving” codes. Cluster 2 can be

characterized as an active learning cluster; with greater usage of the “Student Other

Group Work”, “Student Working in Groups”, and “Student Asking a Question” codes.

Table 5 shows the comparison of the -means ensemble and the COPUS Analyzer𝑘

which shows a significant difference in the results of the two ensembles (Fisher’s Exact

Test, p < 0.001). One interesting outcome is that the -means ensemble is split on the𝑘

COPUS Analyzer classification of “interactive” lectures (clusters 3 and 4) with the

majority of cluster 3 from the Analyzer being designated as active learning classes while

the majority of cluster 4 from the Analyzer being designated as traditional lecture.

RQ3. How do de novo clustering results differ when utilizing -means algorithms𝑘

versus partitioning around medoids (PAM) algorithms?

Another means to identify the most appropriate number of clusters for our

dataset is the robust clustering algorithm partitioning around medoids (PAM). PAM also

identified two as the optimal number of clusters (using both the Analyzer codes and all

25 codes, with similar traditional lecture and active learning profiles as previously

identified from the -means clustering). The cluster assignment for our data that arose𝑘

from the three different individual algorithms (Analyzer codes, collapsed codes, and all

codes) and the vote of the ensemble are presented in Table 6. 57% of our classroom

observations had perfect agreement between the three individual algorithms.
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The comparison of the PAM ensemble clustering and the -means ensemble𝑘

clustering is presented in Table 7. The vast majority of the classes which clustered as

active learning from the -means ensemble were also categorized as active learning𝑘

under the PAM ensemble, whereas 53 of the traditional lecture classes from the 𝑘

-means ensemble were also categorized as active learning under the PAM ensemble

(20% of the total classroom observations). There is a difference in the two ensembles

(Fisher’s Exact Test, p < 0.001). Through the more robust PAM clustering, we were able

to identify more classes that clustered in the active learning instruction profile.

Discussion

The increased push to improve undergraduate STEM education has led to

greater interest in collecting independent (not from the student or instructor perspective)

classroom data to describe what is occurring in the classroom, as evidenced by a

number of recent COPUS-utilizing publications (Liu et al., 2018; Ludwig & Prins, 2019;

Reisner et al., 2020; Stains et al., 2018). There are a variety of arenas in which COPUS

data can be valuable, for supporting faculty merit and promotion cases (as suggested

by Smith et al., 2013), illustrating the effectiveness of professional development

activities, or to connect these data to other student or instructor outcomes for research

purposes. Thus, it becomes increasingly important that we analyze such data in a

rigorous manner following best practices established by other fields. Typical ways that

COPUS data are presented in published literature include in a descriptive fashion to

highlight the average presence of various codes among different instructor populations

(Lewin et al., 2016; McVey et al., 2017; Akiha et al., 2017; Jiang & Li, 2018; Kranzfelder
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et al., 2019; Liu et al., 2018; Reisner et al., 2020; Riddle, 2019; Smith et al., 2013;

Solomon et al., 2018; Weaver et al., 2015), identification of particular course or

instructor characteristics that may correlate with specific COPUS codes using

regression analyses (Tomkin et al., 2019), and clustering of COPUS course profiles

(Stains et al., 2018). The benefit of cluster analysis is that it allows researchers to take a

deeper and more holistic look at the COPUS data rather than rely on drawing

conclusions from select COPUS codes. Furthermore, cluster analysis can also be

combined with the regression analyses used in works like Tomkin et al. (2019) to

identify particular course or instructor characteristics that correlate with a course being

found in a particular cluster. This would allow one to identify variables that correlate with

a course being characterized as falling in an active learning cluster, for example. In

future work, we would like to identify course level data (e.g. enrollment size, taught in an

active learning versus traditional classroom space) and instructor level data (e.g.

research versus teaching track, gender, active learning certification status) that is

associated with distinct forms of classroom instruction.

Before discussing our findings, we recognize this work contains certain

limitations. First, while our dataset consists of COPUS observations from 250 courses,

these were collected at a single institution, which may represent course experiences

that are unique to this setting. Second, as COPUS data collection is labor intensive, we

are making general conclusions regarding a course based on data from only a fraction

of the meeting periods, a limitation less prevalent for other classroom observation

protocols (Owens et al., 2017). And third, our dataset includes observations from both
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STEM and non-STEM courses, albeit all which were large lecture enrollments. While

COPUS is intended for STEM courses, the fact that frequency of COPUS codes varied

minimally between STEM and non-STEM courses (Table S2) leads us to believe the

usage of this protocol in these settings is appropriate.

In this work, we used cluster analysis as a statistical learning algorithm to

describe how our data is related across the COPUS codes. As clustering algorithms are

not meant to be predictive, we suggest that researchers perform a de novo cluster

analysis with each new data set collected, and when doing so, use an ensemble of

clusters as the ensemble improves the accuracy over a single classifier (Moon et al.,

2007). Clusters can change with new data, are affected if there are outliers in the data,

and are dependent on the choice of variables included in the analysis. The information

from different clusterings does not need to be thrown out; the cluster assignments from

previous and current clusterings can be combined by methods presented in Strehl and

Ghosh (2002) or using an ensemble combining the information from the different

clustering as in this paper. We prefer using the PAM algorithm since COPUS data often

have outliers. For our particular dataset, all COPUS codes had outliers with the

exception of “Instructor Lecturing”.

Another approach we believe may be beneficial is latent class analysis (LCA)

clustering techniques and mixture distribution models (Hagenaars & McCutcheon, 2009;

Lubke & Luningham, 2017), which is a theory-driven approach as opposed to the

distance-based approaches of this paper (PAM and -means). It has been noted that𝑘

LCA may be more appropriate to use versus PAM in cases where one’s data set has a
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large number of variables, fewer clusters, larger sample sizes, and non-uniform cluster

sizes (Anderlucci & Hennig, 2014). Numerous education research studies (Maull et al.

2010; Talavera & Gaudioso, 2004; Vermunt & Magidson, 2002; Xu, 2011) have

compared LCA to -means, concluding that the main advantages of LCA over -means𝑘 𝑘

for traditional clustering are that LCA uses probability based modeling, utilizes the BIC

statistic to calculate the best number of clusters, and does not require the user to

standardize variables before the clustering process. Brusco et al. (2016) performed a

simulation study of -means, PAM, and LCA and found that both PAM and LCA𝑘

outperform -means. Pelaez and colleagues (2019) used LCA and a random forest𝑘

ensemble to identify at-risk students in introductory Psychology courses; they found that

they were able to discriminate between the most at-risk and least at-risk students by

identifying characteristics that had a large difference between the clusters that could be

related to the students’ risk level. Because we may expect to see non-uniform cluster

sizes and small numbers of clusters in our COPUS dataset, we would like to compare

the PAM ensemble to LCA clustering in future work (Anderlucci & Hennig, 2014;

Conrad & Bailey, 2015; Magidson & Vermunt, 2002).

In addition to its methodological implications, we feel this work also highlights the

value of cross-disciplinary research. With the push to decrease silos often seen in

discipline-based education research fields (Henderson et al., 2017; Reinholz and

Andrews, 2019), and the rise of data science across many disciplines, STEM education

researchers have an opportunity to leverage collaborations with statisticians and

computer scientists to better understand educational data and identify new ways to
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improve teaching and learning. Collaborations can be formed for specific research

projects, but can also be expanded to create research teams aimed at viewing existing

problems in the field through new lenses and to train the next generation of researchers

to have expertise spanning multiple fields. In this particular instance, by broadening

one’s research team, it may be possible to answer novel questions using existing

COPUS data or expand one’s research design when embarking on a study that relies

on classroom observation data.
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Figure Legends

Figure 1

Radar plots highlighting the resulting clusters (cluster 1 – Fig 1A, traditional lecture and

cluster 2--Fig 1B, active learning) from the 250-course COPUS dataset. Red lines

indicated the average fraction of 2-minute intervals a given code was selected across

the entire dataset. Green lines indicate the average fraction of 2-minute intervals a

given code was selected only for the courses that fall within that cluster. For example in

cluster 1, the “students receiving” code was selected for nearly 100% of the 2-minute

intervals of the courses on average. The collapsed codes (Smith et al., 2014) were used

to create these clusters. I. represents instructor behaviors while S. represents student

behaviors.

Table 1. COPUS Code Description.

Descriptions of the individual codes in Smith et al. (2013), collapsed codes in Smith et

al. (2014), and the Analyzer codes in Stains et al. (2018).

Table 2. Course and Instructor Characteristics of COPUS Dataset.

COPUS data were collected from 250 courses. Large enrollment size was defined as a

course with greater than 100 students. STEM included science, engineering, math, and

informatics/computer science courses. There were three classes of instructor based on

their job titles. Active learning certification status was bestowed on faculty who

completed an active learning instruction professional development series.

Table 3. COPUS Analyzer versus De Novo Clustering of Study Data.
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A -means algorithm with = 7 was applied to our COPUS data and compared to the𝑘 𝑘

outcome of analyzing the same data using the COPUS Analyzer tool. The rows indicate

the number of courses that clustered into the 7 categories of instruction as defined by

the COPUS Analyzer. The columns represent the clustering of our data into 7 undefined

categories from our -means analysis. Similarities and differences in the clustering are𝑘

indicated. For example, of the 77 courses that the COPUS Analyzer sorted into cluster

1, 51 also clustered together with the de novo clustering.

Table 4. -means ensemble of algorithms applied to our dataset.𝑘

Using the COPUS codes selected by the COPUS Analyzer (Stains et al., 2018), the

collapsed COPUS codes (Smith et al., 2014) or all 25 COPUS codes, the optimal

number of clusters of our data was 2 (traditional and active). Each row illustrates the

number of courses that were clustered into either cluster 1 or 2 based on the different

code parameters. For example, 20 courses were sorted into cluster 1 using the

Analyzer codes, 2 using the collapsed codes, and 1 using all codes. Perfect agreement

of the algorithms is shown in bold. The percent indicates the percent of our sample that

was found in each cluster.

Table 5. Comparison of COPUS Analyzer results versus -means ensemble ( = 2). 𝑘 𝑘

Courses are listed based on how they sorted using both the COPUS Analyzer and the

de novo -means ensemble. For example, 97 courses in our traditional lecture cluster𝑘

were also found in the didactic cluster, but an additional 43 were found in the Analyzer’s

interactive cluster.

Table 6. PAM ensemble of algorithms applied to our dataset.
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The optimal number of clusters was also 2 using this ensemble. Similar to Table 4, we

indicate the number of courses that were clustered in a particular pattern using the

Analyzer codes, collapsed codes, or all COPUS codes. Perfect agreement of the

algorithms is shown in bold.

Table 7. Comparison of -means versus PAM ensemble results.𝑘

The manner in which each particular course was clustered using either -means or PAM𝑘

ensembles are indicated. The -means ensemble and PAM ensemble had perfect𝑘

agreement in cluster assignment for 79% of the classroom observations (shown in

bold).

Supplemental Material

Table S1. Summary Statistics of COPUS codes.

The mean, standard deviation, median, and interquartile range of the 25 COPUS codes

in the 250 course dataset.

Table S2. t-test for Two Independent Samples (STEM and non-STEM) for each COPUS

code.

A two sample t-test for each COPUS code by STEM categorization is given along with

the mean and standard error for each of the groups. To account for multiple testing (25

COPUS codes), significance was based on a Bonferroni correction of 0.05/25 = 0.002.

Table S3. Clustering Indices.
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A list of the 30 indices used to choose the best number of clusters in the NbClust

package.

Table S4. Correlation Matrix of collapsed COPUS codes.

The correlation between the collapsed codes is given. Collapsed code descriptions are

given in Smith et al. (2014) and in Table 1. I. represents instructor behaviors while S.

represents student behaviors.

Table S5. Correlation Matrix of COPUS Analyzer codes.

The correlation between the COPUS Analyzer codes is given. Individual code

abbreviations and descriptions can be found in Stains et al. 2018 and in Table 1.

Table S6. Correlation Matrix of all COPUS codes.

The correlation between all of the COPUS codes is given. Individual code abbreviations

and descriptions can be found in Stains et al. 2018 and in Table 1.

Table S7. Best Number of Clusters when Clustering on All Codes, Analyzer Codes, and

Collapsed Codes.

Using the COPUS codes selected by the COPUS Analyzer (Stains et al., 2018), the

collapsed COPUS codes (Smith et al., 2014) or all 25 COPUS codes, the values of the

30 different indices for the optimal number of clusters of the -means algorithm are𝑘

given.
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Table S8. Summary of the Optimal Number of Clusters.

The number of indices choosing the best number of clusters. Out of the 30 indices, 12

of those selected 2 as the optimal number of clusters.
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