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Abstract

Background: The University of California system has a novel tenure-
track education-focused faculty position called Lecturer with Security
of Employment (working titles: Teaching Professor or Professor of
Teaching). We focus on the potential difference in implementation
of active-learning strategies by faculty type, including tenure-track
education-focused faculty, tenure-track research-focused faculty, and
non-tenure-track lecturers. In addition, we consider other instructor char-
acteristics (faculty rank, years of teaching, and gender) and classroom
characteristics (campus, discipline, and class size). We use a robust clus-
tering algorithm to determine the number of clusters, identify instructors
using active learning, and to understand the instructor and classroom
characteristics in relation to the adoption of active-learning strategies.
Results: We observed 125 science, technology, engineering, and math-
ematics (STEM) undergraduate courses at three University of Cali-
fornia campuses using the Classroom Observation Protocol for Under-
graduate STEM to examine active-learning strategies implemented
in the classroom. Tenure-track education-focused faculty are more
likely to teach with active-learning strategies compared to tenure-
track research-focused faculty. Instructor and classroom characteristics
that are also related to active learning include campus, discipline,
and class size. The campus with initiatives and programs to sup-
port undergraduate STEM education is more likely to have instruc-
tors who adopt active-learning strategies. There is no difference in
instructors in the Biological Sciences, Engineering, or Information and
Computer Sciences disciplines who teach actively. However, instruc-
tors in the Physical Sciences are less likely to teach actively. Smaller
class sizes also tend to have instructors who teach more actively.
Conclusions: The novel tenure-track education-focused faculty
position within the University of California system represents a
formal structure that results in higher adoption of active-learning
strategies in undergraduate STEM education. Campus context
and evolving expectations of the position (faculty rank) con-
tribute to the symbols related to learning and teaching that
correlate with differential implementation of active learning.

Keywords: active learning, COPUS, higher education, STEM, Lecturer with
Security of Employment, Professor of Teaching, Teaching Professor, Teaching
Focused Faculty, ensemble methods, robust clustering
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1 Introduction

Evidence-based instructional practices (Landrum, Viskupic, Shadle, & Bul-
lock, 2017), including various active-learning strategies (Driessen, Knight,
Smith, & Ballen, 2020; Lombardi et al., 2021), improve cognitive outcomes
(Pérez-Sabater, Montero-Fleta, Pérez-Sabater, Rising, & De Valencia, 2011;
Schwartz, Chase, Oppezzo, & Chin, 2011; Styers, Van Zandt, & Hayden,
2018; Vanags, Pammer, & Brinker, 2013) and persistence of students (Brax-
ton, Jones, Hirschy, & Hartley III, 2008; Kuh, Cruce, Shoup, Kinzie, &
Gonyea, 2008) in science, technology, engineering, and mathematics (STEM)
majors compared with traditional lecture-based instruction (President’s Coun-
cil of Advisors on Science and Technology, 2012). Especially of significance,
active-learning strategies disproportionately support students from racially
or ethnically minoritized backgrounds on average; thus reducing equity gaps
in academic achievement (Haak, HilleRisLambers, Pitre, & Freeman, 2011;
Maries, Karim, & Singh, 2020; Theobald et al., 2020). Even though widespread
and immediate implementation of active-learning strategies should be a high
priority in undergraduate STEM education (Theobald et al., 2020), adoption
remains low, and most courses are still taught using traditional, lecture-based
instruction (Stains et al., 2018). For this study, we used the Classroom Obser-
vation Protocol for Undergraduate STEM (COPUS) (Smith, Jones, Gilbert, &
Wieman, 2013) to obtain a quantitative measure of the amount of active learn-
ing occurring in the classroom, a commonly used protocol for measuring active
learning at department-wide (Cotner, Jeno, & Ballen, 2017; Kranzfelder et al.,
2019), institution-wide (Akiha et al., 2018; Lewin, Vinson, Stetzer, & Smith,
2016; Lund et al., 2015; Lund & Stains, 2015; Meaders et al., 2019; Smith, Vin-
son, Smith, Lewin, & Stetzer, 2014; Tomkin, Beilstein, Morphew, & Herman,
2019), and multi-institution-wide scales (Borda et al., 2020; Lane et al., 2021;
Stains et al., 2018). Rather than focus on a particular definition of active learn-
ing, we use COPUS to focus our work on instructor and student behaviours
and how those are related to instructor and classroom characteristics.

In this paper, we examine the potential difference in implementation of
active-learning strategies by faculty type, including tenure-track education-
focused faculty, tenure-track research-focused faculty, and non-tenure-track
lecturers. The University of California (UC) system has a novel tenure-track
education-focused faculty position called the Lecturer with Security of Employ-
ment (Harlow, Lo, Saichaie, & Sato, 2020a; Xu & Solanki, 2020), to which
we will refer using its working title across different UC campuses: Teaching
Professor or Professor of Teaching (TP/PoT). Similar to tenure-track research-
focused faculty, TP/PoTs are evaluated for promotion and tenure based on
their activities in scholarship, teaching, and service, but unlike tenure-track
research-focused faculty, there is an increased emphasis on teaching (Uni-
versity of California Office of the President, 2018). For scholarship, many
TP/PoTs engage in discipline-based education research (DBER), evidence-
based curriculum development, outreach, and student mentorship (Harlow et
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al., 2020a). In contrast to non-tenure-track lecturers hired on a fixed-term con-
tract (American Association of University Professors, 2014, 2018; Carvalho
& Diogo, 2018), the TP/PoT position has the protection of tenure and are
voting members of the Academic Senate (University of California Office of
the President, 2018). Research-focused universities often prioritize and incen-
tivize research productivity over teaching (Diamond & Adam, 1998; Savkar &
Lokere, 2010; Schimanski & Alperin, 2018), and TP/PoTs may be institution-
ally (with tenure) and professionally (with expertise) situated to make changes
in undergraduate STEM education by implementing active-learning strategies
in their courses.

Because COPUS makes use of 25 distinct codes, COPUS results can be
difficult to analyze. Most research studies use COPUS data in descriptive form
and highlight particular codes of interest if they vary across study groups
(Akiha et al., 2018; Jiang & Li, 2018; Kranzfelder et al., 2019; Lewin et al.,
2016; Liu et al., 2018; McVey, Bennett, Kim, & Self, 2017; Reisner et al., 2020;
Smith et al., 2013; Solomon et al., 2018; Weaver & Burgess, 2015). For example,
Tomkin et al. (Tomkin et al., 2019) identified differences in the frequency
of various COPUS codes between faculty who did and did not participate
in professional development. Since there are many COPUS codes to explore,
these aforementioned studies are prone to the “winner’s curse” (the difficulty
in reproducing significant findings, where large number of tests are conducted)
(Forstmeier & Schielzeth, 2011) and issues with multiple testing (Hsu, 1996;
Tukey, 1991). In addition, by only considering one code at a time (for example,
percent of time spent lecturing), the researchers, maybe unintentionally, have
operationally defined “active learning” more narrowly than may be appropriate
(for example, as anything antithetical to lecture).

Another approach to explore COPUS data is cluster analysis (Denaro, Sato,
Harlow, Aebersold, & Verma, 2021; Lund et al., 2015; Stains et al., 2018),
which enables the characterization of a course by identifying distinct patterns
of instructor and student behaviors in the classroom. Cluster analysis avoids
issues with testing multiple single codes by considering overall patterns of many
codes together. In addition, by using multiple methods of cluster analysis and
pooling the results with ensemble methods, we avoid prescribing what pat-
terns of teaching may be characteristic of an active learning classroom through
examining many different ways to group such patterns. Our goal is to lever-
age cluster analysis to consider a variety of ways in which an instructor could
implement active-learning strategies, consolidate that information, and then
identify instructor and classroom characteristics that correlate with greater
implementation of active learning.

In this paper, we explore instructional practices across three different UC
campuses through using COPUS. With these data, we identify the extent to
which implementation of active-learning strategies is related to instructor and
classroom characteristics. Specifically, we will address the following research
questions (RQs) about data collected in the UC system:



Implementation of Active Learning by Tenure-Track Teaching Faculty 5

1. To what extent are TP/PoTs more likely to implement active-learning
strategies compared to non-tenure track lecturers and tenure-track research
faculty?

2. What instructor and classroom characteristics correlate with active-
learning?

2 Literature Review

2.1 Tenure-Track Teaching Faculty Position

The TP/PoT position represents a formal institutional structure in the UC
system, existing as a specific academic title code with its own definitions and
promotion criteria (University of California Office of the President, 2018).
TP/PoTs are viewed by administrators as education experts to take on sub-
stantial teaching responsibilities, coordinate assessment efforts, and provide
professional development within departments (Harlow, Buswell, Lo, & Sato,
2021). However, it is an open question whether this perceived pedagogical
expertise is actually reflected in their instructional practices, for example
in their implementation of more active-learning strategies as compared to
tenure-track research-focused faculty and non-tenure-track lecturers.

Indeed, Xu and Solanki (Xu & Solanki, 2020) found no difference in
student outcomes within first-quarter courses taught by TP/PoTs, tenure-
track research-focused faculty, and non-tenure-track lecturers when comparing
grades and enrollment in subsequent STEM courses. Individuals, regardless
of structural roles and positions, can have the agency to implement specific
instructional practices in their classrooms (Reinholz & Apkarian, 2018). Even
within the TP/PoT position, individuals have a variety of training related to
teaching and education, and they also pursue different forms of scholarly activ-
ity in STEM education (Harlow et al., 2020a), suggesting a certain level of
heterogeneity.

The variations in the number of TP/PoTs across departments and cam-
puses (Harlow et al., 2020a) suggest different values in hiring these individuals
and utilizing the position as a structural element in undergraduate STEM edu-
cation. Furthermore, the campuses in this study have a variety of initiatives
related to the implementation of active learning. Together, these differences in
resources represent different combinations of artefacts, knowledge, and values
at the institutional level.

2.2 Instructor and Classroom Characteristics

Individual agency may manifest as variations in individuals within the same
structural element implementing more or less active-learning strategies, which
we will examine through various instructor and classroom characteristics. For
example, rank and years of teaching contribute to power dynamics within a
department (Reinholz & Apkarian, 2018), which may result in different teach-
ing assignments (e.g. smaller class size, courses more directly related to an
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individual’s expertise, etc.) that could facilitate the implementation of active-
learning strategies in the classroom. We examine instructor characteristics,
(faculty rank, years of teaching experience, and gender) and course characteris-
tics (campus, discipline, and class size), that may influence the implementation
of active-learning strategies in our STEM classrooms. Out of all of these fac-
tors, years of teaching experience (Alkhouri et al., 2021; Apkarian et al., 2021;
Ebert-May et al., 2011; Emery, Maher, & Ebert-May, 2020; Lund et al., 2015)
and class size (Alkhouri et al., 2021; Apkarian et al., 2021; Budd, Van der
Hoeven Kraft, McConnell, & Vislova, 2013; Ebert-May et al., 2011; Emery et
al., 2020; Henderson & Dancy, 2007; Smith et al., 2014; Stains et al., 2018)
have both been shown to be the most significant and consistent predictors of
implementation of active-learning strategies. Previous work has shown that
the more teaching experience an instructor has with active learning, the more
likely they are to implement it (Ebert-May et al., 2011). And that large class
sizes can hinder the use of active learning with very large classes (100 or more
students) self-reporting significantly more lecturing than instructors in other
classes (Apkarian et al., 2021).

In contrast, there is evidence of differences in implementation of active
learning across faculty rank (Emery et al., 2020; Lane et al., 2019), gender
(Budd et al., 2013; Lane et al., 2019), campus or institution (Budd et al., 2013),
and department or discipline (Alkhouri et al., 2021; Eagan, 2016; Ebert-May
et al., 2011; Henderson & Dancy, 2007; Lund et al., 2015; Stains et al., 2018),
but it is less well understood and/or results are inconsistent across studies. For
example, when looking at usage of active-learning strategies by faculty rank
and gender, faculty rank did not make a difference, but gender did make a
difference (Lane et al., 2019). However, others found differences due to instruc-
tor’s gender with respect to teaching approaches over time (Emery et al.,
2020). When considering campuses and departments, there were differences in
teaching practices between instructors at research versus non-research univer-
sities (Budd et al., 2013). As a result, the impacts of these characteristics are
worth further consideration in relation to implementation of active-learning
strategies.

2.3 COPUS

COPUS is a segmented observation protocol (Smith et al., 2013), where the
class session is divided into short periods (e.g. two-minute time intervals) and
the observer rates each item as it occurred in that time period. The COPUS
instrument consists of 25 distinct codes that classify student and instructor
behaviors (Table 1 and 2) recorded in two-minute intervals by observers (Smith
et al., 2013). There are many different ways that researchers choose to group
the COPUS codes: (1) the 25 “original” COPUS codes (Smith et al., 2013), (2)
the subset of eight “analyzer” codes out of the original 25 (Stains et al., 2018),
(3) the eight “collapsed” categories consisting of all 25 original codes (Smith
et al., 2014). In addition, we will consider a “novel” grouping of codes that
we developed to differentiate learning activities. The description of the codes
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are displayed in Tables 1-2. For the student COPUS codes, we distinguish
between individual COPUS codes (“original” and “analyzer” codes) and com-
bined codes (“collapsed” and “novel” codes) by using “Student.code” versus
“S.code”. Similarly for the instructor COPUS codes we designate the individ-
ual codes using “Instructor.code” (“original” and “analyzer” codes), whereas
combined codes are designated with “I.code” (“collapsed” and “novel” codes).
The percent of class time spent on a particular code is found by taking the
percent of two-minute intervals that contained the particular code. For the
combined codes, we check to see if any code in the group occurred within a
2-minute interval and then calculate the percent of two-minute intervals that
contained any code in the group.

The 25 “original” COPUS codes focus on what the students are doing and
what the instructor is doing. The eight “analyzer” codes have been used to
characterize three groups of instructional styles (Stains et al., 2018): (1) didac-
tic: classes with more than 80% of the class period including Instructor.Lec;
(2) interactive lecture: classes in which instructors supplemented lecturing
with other group activities or clicker questions with group work; and (3)
student-centered: classes in which even larger portions of the class period were
dedicated to group activities relative to the interactive style. The “collapsed”
codes including both instructor and student behaviors (Smith et al., 2014).

The “collapsed” codes that are considered more teacher-centered and
traditional are instructor lecturing, instructor writing on the board, instruc-
tor performing a demonstration or simulation, and students listening to the
instructor (i.e., I.Presenting and S.Receiving). The more student-centered
and active codes represented in the “collapsed” codes are student talking
(S.Talking) and working (S.Working) as well as instructor guiding (I.Guiding).
S.Talking includes students asking and answering questions, students engaged
in a whole class discussion, and students presenting or watching student pre-
sentations. S.Working is used for individual thinking and problem solving,
discussing clicker questions, working on a worksheet, making a prediction, or
doing other assigned group activities. I.Guiding includes instructors posing
or following up on clicker questions, listening and answering student ques-
tions, and moving through the class. The additional “collapsed” codes are less
student-centered; students listening to instructor/taking notes (S.Receiving),
students waiting or student other (S.Other) as well as instructors present-
ing, administration, and other (I.Presenting, I.Administration, I.Other). The
“novel” codes are based on the level of interactions and presumed cognitive
engagement in the classroom: facilitating interactive dialogues among students
(S.Interactive or I.Interactive), promoting individual thinking in all students
(S.Thinking or I.Thinking), attending to one or few students (S.Few or I.Few),
providing information with minimal interactions (S.Minimal or I.Minimal),
and other (S.Other or I.Miscellaneous). S.Other in the “novel” codes is the
same as S.Other in the “collapsed” codes, whereas I.Miscellaneous in the
“novel” codes combines I.Other and I.Administration from the “collapsed”
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codes (same as combining Instructor.Adm, Instructor.W, and Instructor.Other
from the “original” codes).

Table 1 Student COPUS Codes. Descriptions of the “original” codes in Smith et al.
(Smith et al., 2013), “analyzer” codes in Stains et al. (Stains et al., 2018), “collapsed”
codes in Smith et al. (Smith et al., 2014), and “novel” codes. There are 19 unique student
COPUS codes.

Student.Codes S.Codes

Student COPUS Code Description Original Analyzer Collapsed Novel

Listening: Listening to instructor/taking notes, etc. L – Receiving Minimal
Answer Question: Student answering a question posed
by the instructor with rest of class listening

AnQ – Talking Few

Asking: Student asks question SQ SQ Talking Few
Whole Class: Engaged in whole class discussion by
offering explanations, opinion, judgment, etc. to whole
class, often facilitated by instructor

WC – Talking Interactive

Presentation: Presentation by student(s) SP – Talking Few
Thinking: Individual thinking/problem solving. Only
mark when an instructor explicitly asks students to
think about a clicker question or another question/prob-
lem on their own.

Ind – Working Thinking

Clicker: Discuss clicker question in groups of 2 or more
students

CG CG Working Interactive

Worksheet: Working in groups on worksheet activity WG WG Working Interactive
Other Group: Other assigned group activity, such as
responding to instructor question

OG OG Working Interactive

Prediction: Making a prediction about the outcome of
demo or experiment

Prd – Working Thinking

Test/Quiz: Test or quiz TQ – Working Thinking
Waiting: Waiting (instructor late, working on fixing AV
problems, instructor otherwise occupied, etc.)

W – Other Other

Other: Other – explain in comments Other – Other Other

Total Number of Codes: 13 4 4 5
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Table 2 Instructor COPUS Codes. Descriptions of the “original” codes in Smith et al.
(Smith et al., 2013), “analyzer” codes in Stains et al. (Stains et al., 2018), “collapsed”
codes in Smith et al. (Smith et al., 2014), and “novel” codes. There are 19 unique
instructor COPUS codes.

Instructor.Codes I.Codes

Instructor COPUS Code Description Original Analyzer Collapsed Novel

Lecturing: Lecturing (presenting content,
deriving mathematical results, presenting a
problem solution, etc.)

Lec Lec Presenting Minimal

Writing: Real-time writing on board, doc. pro-
jector, etc. (often checked off along with Lec)

RtW – Presenting Minimal

Demo/Video: Showing or conducting a demo,
experiment, simulation, video, or animation

DV – Presenting Minimal

Follow Up: Follow-up/feedback on clicker
question or activity to entire class

FUp – Guiding Few

Pose Question: Posing non-clicker question to
students (non-rhetorical)

PQ PQ Guiding Thinking

Clicker Question: Asking a clicker question
(mark the entire time the instructor is using a
clicker question, not just when first asked)

CQ CQ Guiding Thinking

Answer Question: Listening to and answering
student questions with entire class listening

AnQ – Guiding Few

Moving/Guiding: Moving through class guid-
ing ongoing student work during active learning
task

MG – Guiding Interactive

One on One: One-on-one extended discussion
with one or a few individuals, not paying atten-
tion to the rest of the class (can be along with
MG or AnQ)

1o1 1o1 Guiding Interactive

Administration: Administration (assign
homework, return tests, etc.)

Adm – Administration Miscellaneous

Waiting: Waiting when there is an opportu-
nity for an instructor to be interacting with or
observing/listening to student or group activi-
ties and the instructor is not doing so

W – Other Miscellaneous

Other: Other – explain in comments Other – Other Miscellaneous

Total Number of Codes: 12 4 4 5
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3 Methods

This study was approved by the Institutional Review Board at each of the
three study campuses within the UC system (UC Irvine 2018-4211, UC Merced
2020-3, and UC San Diego 191318XX).

3.1 Study Context

UC is a research-intensive university system that enrolls over 285,500 full-
time undergraduate students annually. The student body in the UC system
is highly diverse, with most campuses designated as Hispanic-Serving Insti-
tutions. As a research-intensive public university system, UC exhibits many
of the hallmarks of their peer institutions, including rising course enrollment
and faculty promotion relying primarily on research productivity and external
grant funding for tenure-track research-focused faculty (Brownell & Tanner,
2012). At the same time, the UC system has the novel TP/PoT position with a
stronger emphasis on teaching as well as more the traditional non-tenure-track
lecturer position. Each UC campus also has its own local culture and initia-
tives related to undergraduate STEM education. Thus, campuses within the
UC system provide a unique and informative venue for examining the imple-
mentation of active learning in STEM courses in the context of faculty type
and other instructor and classroom characteristics.

Campuses 1, 2, and 3 are similar, in that they are research-intensive insti-
tutions, have large student populations (roughly 10,000 undergraduates or
greater), and all serve significant populations (25%+) of racially or ethnically
minoritized students. All three campuses also have dedicated teaching and
learning centers that offer professional development opportunities for instruc-
tors to implement evidence-based teaching practices. Nonetheless, Campus 3
is distinct in that it is home to an 8-session professional development series
specifically aimed at the implementation of active learning pedagogies, which
while voluntary has been completed by roughly 10% of the campus’ fac-
ulty. It also has the most number of initiatives to support evidence-based
instructional practices, including a campus-wide education research initiative
focused on undergraduate education, along with a newly completed active-
learning building that exclusively contains classrooms designed to facilitate
active learning.

3.2 Data Collection

Live COPUS observations were conducted in 125 STEM undergraduate courses
across the three study campuses (Table 4). We observed each participating
course at least twice for the entire duration of each class period, and at least
two observers were present for each live observation. COPUS does not require
observers to make judgments regarding teaching quality, but rather categorizes
classroom activities by “what the students are doing” and “what the instruc-
tor is doing” (Smith et al., 2013). COPUS allows observers, after 1.5 hours of
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training (Smith et al., 2013), to reliably characterize behaviors in STEM class-
rooms by documenting 13 student behaviors (such as listening or answering
questions) and 12 instructor behaviors (such as lecturing or posing questions)
over two-minute time intervals (Denaro et al., 2021; Smith et al., 2013).

COPUS data collection and training was performed as established (Smith
et al., 2013). All observers were trained at their home campus by faculty,
postdoctoral scholars, and/or staff. Each campus had 5-15 trained observers
conducting live COPUS observations. Observers were trained for a minimum
of three hours; training included the description of the COPUS codes, pre-
sentation of classroom videos that observers used to practice coding with
COPUS, and post observation mentoring and discussions. At Campus 3,
training also included hands-on time with the Generalized Observation and
Reflection Platform (GORP) (Martinez, 2018). Trained observers had initial
reliability between the two-raters of at least 90% at two campuses and 66% at
the remaining campus. At the campus with the lower initial reliability, at least
two coders were present in the classroom for live observations to ensure trust-
worthiness in the data collection. In addition, any differences in coding were
resolved through discussion to resolve any coding disagreements until reaching
100% consensus.

Instructors agreed at the beginning of each academic term to be observed
during two class periods. Dates were assigned based on observer availability
without any prior knowledge of the planned class activities. At Campus 2 and
3, observations were rescheduled if the originally selected date was an exam
day; at Campus 1, exam dates were avoided based on syllabi provided by
instructors. Observers coded classroom activities using COPUS for each class
period and then summarized the data as percent of two-minute intervals during
which a given code was occurring. For each class session observed, we used
five datasets that are comprised of different subsets or combinations of codes.
Dataset 1 includes the 25 “original” COPUS codes, dataset 2 includes the 8
“analyzer” codes, dataset 3 includes the 8 “collapsed” codes, and dataset 4
includes 10 “novel” codes. Dataset 5 includes all of the 38 “unique” codes from
the first 4 datasets. Data for each course were averaged prior to data analysis.

We collected data on other instructor characteristics (faculty rank, years of
teaching, and gender) and classroom characteristics (campus, discipline, and
class size). For non-tenure-track lecturers, we assigned the rank of “associate”
to continuing lecturers, who achieved that status after the equivalent of six
years of full-time service with excellence in teaching based on performance
review, and “assistant” to other lecturers. While the continuing lecturer status
is not tenure, it is most equivalent to the promotion from assistant to associate
rank in terms of time of service for TP/PoTs and tenure-track research-focused
faculty. There is no equivalent promotion to the full professor rank for non-
tenure-track lecturers in the UC system.
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3.3 Statistical Analyses

3.3.1 Algorithms for Clustering

Cluster analysis is an unsupervised learning technique which identifies groups
of observations when there is no response variable of interest (Fisher, 1958;
Hartigan & Wong, 1979; Hastie, Tibshirani, & Friedman, 2009; Kaufman &
Rousseeuw, 1987; MacQueen, 1967; Pollard, 1981). The choice of clustering
algorithm or addition of new data can result in different clusters (Ben-David,
Von Luxburg, & Pál, 2006; Fisher, 1958; Hartigan, 1975; Hartigan & Wong,
1979; Hastie, Tibshirani, & Friedman, 2001; James, Witten, Hastie, & Tibshi-
rani, 2013; Tibshirani & Walther, 2005). While Stains et al. (Stains et al., 2018)
generated a COPUS Analyzer tool (http://www.copusprofiles.org/) to “auto-
matically classif[y] classroom observations into specific instructional styles,
called COPUS Profiles”, we previously showed that the cluster assignments
vary when utilizing the COPUS Analyzer versus a de novo cluster analysis
guided by the parameters established by the Analyzer (Denaro et al., 2021).
Since clustering techniques are meant to be descriptive, rather than predictive,
when new data is gathered a new clustering algorithm should be employed
(Ben-David et al., 2006; Fisher, 1958; Hartigan, 1975; Hartigan & Wong, 1979;
Hastie et al., 2001; James et al., 2013).

There are many choices of clustering algorithms that one can use to cluster
heterogeneous data into homogeneous groups (Kaufman & Rousseeuw, 2008,
2009; Ng & Han, 1994). Rather than choose a single algorithm, we considered
11 different types of cluster analyses (k-means, partitioning around medoids
[PAM], non-negative matrix factorization using euclidean distance, hierarchical
clustering, divisive analysis clustering, affinity propagation, spectral cluster-
ing using radial-basis kernel function, Gaussian mixture model, self-organizing
map with hierarchical clustering, fuzzy C-means clustering, and hierarchical
density-based spatial clustering of applications with noise) and evaluated which
one fit our data best. To specify the desired number of clusters, k, the diceR
package in R was used (Chiu & Talhouk, 2018). For each algorithm and every
value of k, a random subsampling of 80% of the original observations is carried
out 5 times. Therefore not every sample is included in each clustering. The
clustering for each of the 11 algorithms is completed using k-nearest neighbor
and majority voting. The relevant number of clusters was found by evaluat-
ing 15 different internal indices (see the supplemental materials for a complete
list, Table S1) while varying the cluster size (from k = 2, . . . , 9). For further
discussion of the indices, see Charrad et al. (Charrad, Ghazzali, Boiteau, &
Niknafs, 2014) and Chiu and Talhouk (Chiu & Talhouk, 2018). The internal
clustering criteria consist of measures of compactness (how similar are objects
within the same cluster), separation (how distinct are objects from different
clusters), and robustness (how reproducible are the clusters in other datasets).
Index citations and whether or not the specific index should be maximized or
minimized are included in the supplemental materials (Table S1).

http://www.copusprofiles.org/
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3.3.2 Ensemble of Algorithms

Furthermore, instead of relying on a single “best” clustering, we use an ensem-
ble of algorithms applied to our data. To create the ensemble, we run multiple
clusterings using different subsets of the COPUS codes (“original”, “analyzer”,
“collapsed”, “novel”, and “unique”) and then combine the information of the
respective individual algorithms. Use of the ensemble of algorithms gives us a
robust cluster assignment, as our cluster assignment does not rely on a single
choice of variables, nor does it rely on a single choice for determining the best
number of clusters, nor does it rely on a single choice of consensus function. It
has been shown that for classification an ensemble average will perform bet-
ter than a single classifier (Moon et al., 2007). A few applications of ensemble
algorithms can be found in the educational literature (Beemer, Spoon, He,
Fan, & Levine, 2018; Kotsiantis, Patriarcheas, & Xenos, 2010; Pardos, Gowda,
Baker, & Heffernan, 2012).

Figure 1 displays the algorithm that we used to obtain our final clusters.
We have COPUS data from n = 125 undergraduate courses across 18 STEM
departments at 3 campuses. We then transformed our original COPUS data
into 5 datasets (original, analyzer, collapsed, novel, and unique). All COPUS
codes were standardized to have a mean of 0 and a standard deviation of 1 prior
to clustering. We combined the results of the individual clustering algorithms
(k-means, PAM, etc.) using a consensus function. The consensus function is
used to combine the clustering results of the algorithms to create an ensem-
ble. Next, we considered 4 different ways to combine the clustering results:
k-modes (Huang, 1997), majority voting (Ayad & Kamel, 2010), Cluster-based
Similarity Partitioning Algorithm (CSPA) (Ghosh & Acharya, 2011; Strehl &
Ghosh, 2002), and Linkage Clustering Ensemble (LCE) (Iam-On, Boongoen,
& Garrett, 2010; Iam-on & Garrett, 2010). After creating the cluster ensem-
bles, we evaluated whether or not the individual algorithms or the ensembles
created the best clusters using the internal indices previously described and by
having well balanced cluster sizes. Using majority voting, the robust ensem-
ble clustering process identifies the final clusters. We note that the number of
final clusters was not predetermined.

3.3.3 Logistic Regression

To present evidence of instructor (faculty type, faculty rank, years of teaching,
and gender) and classroom (campus, discipline, and class size) characteristics
that correlate with classes within the active-learning cluster(s), logistic regres-
sion was used. We modeled the odds of a course falling into one of two groups
(in this case being classified as low- or high-active learning based on cluster
assignment) to address our specific research questions. More specifically, we
want to know if there is an increase in the odds of teaching an active-learning
course for certain course or instructor characteristics compared to teaching a
traditional lecture (where the instructor is doing most of the talking while the
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students are primarily listening). To accomplish this, we fit a logistic regres-
sion model utilizing the stats package in R (R Core Team, 2019). Assuming we
have a sample of n independent observations, (xi , yi), we obtain estimates for
βt = (β0, β1, . . . , βk). Let xt = (x1, x2, . . . , xk) be the k predictors: tenure-track
research faculty, tenure-track teaching faculty, or non-tenure track lecturers;
assistant, associate, or full rank professor; small (fewer than 100 students),
medium (100-199), or large (200 or greater students) class size; Biological Sci-
ences, Physical Sciences, Information and Computer Sciences (I&C Sciences),
or Engineering; study campus; and gender of the instructor. Let Y be whether
or not the classroom observation falls under the active-learning cluster(s) and
the probability of the classroom observation being part of the active-learning
cluster(s) be p = P (Y = 1). We assume a linear relationship between the pre-
dictor variables and the log-odds of the event that the classroom observation
falls into the active-learning cluster(s). The model is given by:

log

(
p

1 − p

)
= β0 + β1x1 + · · · + βkxk (1)

First, we built a full model where we include instructor (faculty type, fac-
ulty rank, years of teaching, and gender) and classroom (campus, discipline,
and class size) characteristics. We performed best subsets logistic regression
using the bestglm package in R McLeod and Xu (2018) to choose the best fit-
ting model to the data. The best subsets procedure entails building a model
of the log odds of active-learning cluster(s) for each of the possible subsets of
covariates and calculating the respective Akaike Information Criteria (AIC) of
the model. The final model is chosen by minimizing the AIC. The AIC bal-
ances model fit with generalizability Chakrabarti and Ghosh (2011); Sakamoto,
Ishiguro, and Kitagawa (1986). We checked for significant 2-way interac-
tions between faculty type and the remaining predictors of the active-learning
cluster(s).

4 Results

Summary statistics of the raw percentage of time spent on each code split by
faculty type can be found in Tables 3. The corresponding standardized per-
centage of time spent on each code can be found in the supplemental materials.
The most common codes are student listening (Student.L) and instructor lec-
turing (Instructor.Lec). Students spent less than 5% of class time on each of the
following activities: engaging in a whole class discussion (Student.WC), giv-
ing or watching student presentations (Student.SP), making predictions about
an outcome of a demonstration or experiment (Student.Prd), taking a test or
quiz (Student.TQ), waiting for the instructor (Student.W), discussing clicker
questions (Student.CG), working in groups (Student.WG), and other activi-
ties (Student.O). Instructors spent less than 5% of class time on each of the
following activities: showing or conducting a demo, experiment, or simulation
(Instructor.DV), one-on-one extended discussion with one or a few students
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(Instructor.1o1), waiting to interact with student when given the opportu-
nity (Instructor.W), and other activities (Instructor.O). 5 of the 8 “analyzer”
codes were rarely seen for faculty members (Student.CG, Student.WG, and
the instructor asking a clicker question [Instructor.CQ]). In addition, 2 of the
remaining 5 “analyzer” codes were rare for tenure-track research faculty and
non-tenure track lecturers (Student.OG and Instructor.1o1), but were used
more often by the tenure-track teaching faculty.

Table 3 Summary statistics of the percentage of time spent on each of the COPUS codes
by faculty type. Mean and standard deviation (in parentheses) are given as well as the F
statistic and p-value for testing if there is a difference in the amount of time spent on a
code across the three faculty types. Significance is denoted for codes using a Bonferroni
correction of α∗ = 0.05/38 = 0.0013.

Tenure-track

Yes Yes No

Teaching Research
Dataset Code Faculty Faculty Lecturers F p-value

1,3,4,5 Student.L 80.85 (16.37) 95.37 (6.59) 93.38 (11.29) 5.04 0.01 *
S.Receiving/
S.Minimal

1,5 Student.AnQ 18.45 (18.31) 6.52 (12.65) 14.41 (22.27) 2.14 0.12
1,5 Student.WC 0.00 (0.97) 0.00 (0.49) 0.00 (1.03) 1.00 0.37
1,5 Student.SP 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) – –
1,5 Student.Ind 12.42 (15.69) 1.96 (5.99) 4.00 (11.52) 9.79 <0.001 *
1,5 Student.Prd 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) – –
1,5 Student.TQ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) – –
1,5 Student.W 0.00 (1.57) 1.92 (3.10) 0.64 (3.10) 2.20 0.12
1,5 Student.O 0.00 (1.58) 0.00 (1.68) 0.00 (1.06) 1.00 0.37

1,2,5 Student.SQ 10.16 (11.58) 6.74 (8.15) 6.33 (7.86) 1.55 0.22
1,2,5 Student.CG 1.93 (11.26) 0.00 (1.87) 0.00 (9.86) 1.75 0.18
1,2,5 Student.WG 1.28 (7.10) 0.00 (1.54) 0.00 (0.00) 1.96 0.14
1,2,5 Student.OG 5.85 (12.60) 0.00 (1.01) 0.00 (6.45) 5.87 <0.001 *
3,5 S.Working 39.48 (24.26) 7.11 (22.62) 20.30 (23.95) 14.50 <0.001 *
3,5 S.Talking 27.77 (24.66) 16.27 (21.31) 23.77 (19.48) 2.47 0.09

3,4,5 S.Other 1.92 (3.61) 2.96 (3.02) 1.96 (4.32) 0.17 0.85
4,5 S.Interactive 26.32 (27.41) 2.94 (16.46) 14.23 (20.96) 10.92 <0.001 *
4,5 S.Thinking 15.89 (18.61) 3.25 (8.55) 4.56 (12.25) 9.46 <0.001 *
4,5 S.Few 27.11 (21.83) 16.07 (21.72) 22.39 (19.48) 2.07 0.13

1,5 Instructor.RtW 12.34 (27.91) 11.13 (59.29) 25.85 (36.48) 1.30 0.28
1,5 Instructor.DV 1.28 (5.12) 1.25 (6.75) 2.44 (6.76) 0.15 0.86
1,5 Instructor.FUp 21.32 (20.55) 10.58 (13.92) 17.88 (20.09) 5.89 <0.001 *
1,5 Instructor.AnQ 10.53 (12.11) 6.64 (8.69) 6.92 (7.78) 1.66 0.20
1,5 Instructor.MG 11.84 (24.43) 0.00 (5.76) 0.00 (13.72) 11.32 <0.001 *

1,3,5 Instructor.Adm/ 8.81 (7.77) 6.68 (8.24) 7.69 (7.33) 1.92 0.15
I.Administration

1,5 Instructor.W 0.64 (3.29) 0.61 (3.10) 0.64 (3.22) 0.02 0.98
1,5 Instructor.O 0.81 (4.39) 0.00 (2.96) 0.00 (1.83) 0.58 0.56

1,2,5 Instructor.Lec 54.70 (28.58) 84.46 (21.09) 70.54 (25.90) 7.96 <0.001 *
1,2,5 Instructor.PQ 20.86 (18.09) 8.18 (17.77) 18.71 (20.96) 1.83 0.16
1,2,5 Instructor.CQ 6.00 (15.92) 0.00 (7.53) 0.00 (12.86) 2.33 0.10
1,2,5 Instructor.1o1 2.56 (6.32) 0.00 (0.00) 0.00 (3.27) 5.78 <0.001 *
3,4,5 I.Presenting/ 67.00 (24.96) 87.75 (14.53) 80.57 (18.22) 6.24 <0.001 *

I.Minimal
3,5 I.Guiding 70.67 (23.82) 36.41 (37.26) 50.65 (23.71) 14.26 <0.001 *
3,5 I.Other 3.66 (7.81) 2.04 (6.31) 3.28 (6.49) 0.17 0.84
4,5 I.Interactive 12.89 (23.67) 0.00 (6.63) 0.67 (13.79) 11.68 <0.001 *
4,5 I.Thinking 36.87 (22.73) 16.8 (24.73) 31.3 (24.19) 4.27 0.02
4,5 I.Few 33.75 (18.54) 20.83 (20.09) 23.72 (19.95) 7.46 <0.001 *
4,5 I.Miscellaneous 14.00 (15.00) 8.21 (11.79) 11.80 (13.59) 0.81 0.45

We found that TP/PoTs, tenure-track research-focused faculty, and non-
tenure-track lecturers differ in what they do in the classroom and how
often they implement active-learning strategies. Significance is denoted for
codes using a Bonferroni correction of α∗ = 0.05/38 = 0.0013. There
are different amounts of instructor lecturing (Instructor.Lec), presenting
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(I.Presenting), follow-up (Instructor.FUp), moving and guiding (Instruc-
tor.MG and I.Guiding), one-on-one extended discussion (Instructor.1o1), inter-
active (I.Interactive), active (I.Active), and passive (I.Passive) for TP/PoTs,
tenure-track research-focused faculty, and non-tenure-track lecturers. Corre-
spondingly, in student behaviors, there are different amounts of student think-
ing (Student.Ind), group activities (Student.OG), working (S.Working), inter-
active (S.Interactive), constructive (S.Constructive), and passive (S.Passive).

4.1 RQ1: To what extent are TP/PoTs more likely to
implement active-learning strategies compared to
non-tenure track lecturers and tenure-track research
faculty?

The COPUS data separated into two clusters representing traditional lec-
ture and active learning (based on majority voting and the robust ensemble
clustering process displayed in Figure 1). Details of the clustering algorithm
can be found in the supplemental materials (Figure S1-S53, Table S3-S19).
We note that the number of clusters was not predetermined, however our
data resulted in two final cluster assignments. As a reference, the instruc-
tor and classroom characteristics for the individual clustering ensembles of
the five datasets (original, analyzer, collapsed, novel, and unique codes) can
be found in the supplemental materials (Table S20-S26). The instructor and
classroom characteristics vary across the traditional-lecture cluster (n0 = 78)
and the active-learning cluster (n1 = 47) (Table 4). For example, in the
traditional-lecture cluster, tenure-track research-focused faculty represent the
largest proportion at 50%, followed by non-tenure-track lecturers at 28% and
TP/PoTs at 22%. In contrast, in the active-learning cluster, TP/PoTs repre-
sent the largest proportion at 47%, followed by tenure-track research-focused
faculty at 28% and non-tenure-track lecturers at 26%.

The summary statistics of each of the COPUS codes by final cluster assign-
ment (Table 5) reveal that there is a significant difference in what the students
and instructors are doing for those in the traditional-lecture cluster and those
in the active-learning cluster for the majority of codes. For example, instructors
in the traditional-lecture cluster spend more time lecturing (Instructor.Lec in
original and analyzer codes) compared to faculty in the active-learning cluster
(87% versus 47% of the two-minute intervals). Instructors in the traditional-
lecture cluster also spend less time moving through class guiding ongoing
student work during active-learning tasks (Instructor.MG in original codes, 0%
versus 17%). Correspondingly, students in the traditional-lecture classrooms
spend more time listening (Student.L in original codes, 96% versus 78%) and
less time engaging in group work (Student.OG in original and analyzer codes,
0% versus 12%). For the collapsed and novel codes, almost all codes show sig-
nificant differences between the traditional-lecture cluster and active-learning
cluster (Table 5). The boxplots for each of the codes split by final cluster
assignment are included in the supplemental materials (Figure S1-S38).
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Table 4 Summary Statistics for the Final Clustering. Summary of instructor and
classroom demographics for the traditional-lecture and active-learning clusters. The
number and the conditional percent (given cluster) are presented in parentheses for
categorical variables. The mean and standard deviation (in parentheses) are presented for
the quantitative variable.

Variable Traditional Cluster Active Cluster All Classes

Faculty Type
Teaching Faculty 17 (22%) 22 (47%) 39 (31%)
Research Faculty 39 (50%) 13 (28%) 52 (42%)
Lecturers 22 (28%) 12 (26%) 34 (27%)

Faculty Rank
Assistant 32 (41%) 28 (60%) 60 (48%)
Associate 17 (22%) 10 (21%) 27 (22%)
Full 29 (37%) 9 (19%) 38 (30%)

Years of Teaching 9 (6) 9 (7) 9 (6)

Gender
Female 33 (42%) 26 (55%) 59 (47%)
Non-female 45 (58%) 21 (45%) 66 (53%)

Campus
1 4 (5%) 11 (23%) 15 (12%)
2 18 (23%) 3 (6%) 21 (17%)
3 56 (72%) 33 (70%) 89 (71%)

Discipline
Biological Sciences 15 (19%) 24 (51%) 39 (31%)
Physical Sciences 30 (38%) 6 (13%) 36 (29%)
I&C Sciences 15 (19%) 11 (23%) 26 (21%)
Engineering 18 (23%) 6 (13%) 24 (19%)

Class Size
Small (0-99) 16 (21%) 17 (36%) 33 (26%)
Medium (100-199) 34 (44%) 9 (19%) 43 (34%)
Large (200+) 28 (36%) 21 (45%) 49 (39%)

n0 = 78 n1 = 47 n = 125
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Table 5 Summary statistics of the percentage of time for each of the COPUS codes by
cluster. Mean and standard deviation (in parentheses) are given as well as the F statistic
and p-value for testing if there is a difference in the amount of time spent on a code for the
traditional and active cluster. Significance is denoted for codes using a Bonferroni
correction of α∗ = 0.05/38 = 0.0013.

Traditional Active
Dataset Code Cluster Cluster F p-value

1,3,4,5 Student.L 96.45 (5.60) 77.9 (19.22) 97.94 < 0.001 *
S.Receiving/
S.Minimal

1,5 Student.AnQ 7.32 (14.56) 14.62 (15.99) 1.17 0.28
1,5 Student.WC 0.00 (0.00) 0.00 (1.06) 4.31 0.04
1,5 Student.SP 0.00 (0.00) 0.00 (0.00) – –
1,5 Student.Ind 2.00 (8.06) 7.45 (14.86) 17.11 < 0.001 *
1,5 Student.Prd 0.00 (0.00) 0.00 (0.00) – –
1,5 Student.TQ 0.00 (0.00) 0.00 (0.00) – –
1,5 Student.W 0.00 (1.83) 1.96 (3.25) 9.26 < 0.001 *
1,5 Student.O 0.00 (1.55) 0.00 (2.00) 0.02 0.88

1,2,5 Student.SQ 8.53 (11.67) 7.70 (6.54) 0.41 0.52
1,2,5 Student.CG 0.00 (1.55) 2.40 (12.68) 19.52 < 0.001 *
1,2,5 Student.WG 0.00 (0.00) 1.93 (6.82) 6.45 0.01
1,2,5 Student.OG 0.00 (0.00) 12.00 (16.02) 65.69 < 0.001 *
3,5 S.Working 5.88 (14.97) 43.48 (18.76) 153.94 < 0.001 *
3,5 S.Talking 18.62 (23.94) 26.8 (20.17) 1.18 0.28

3,4,5 S.Other 1.96 (3.31) 3.85 (5.10) 1.77 0.19
4,5 S.Interactive 2.32 (10.16) 34.62 (17.32) 150.15 < 0.001 *
4,5 S.Thinking 2.39 (10.01) 16.59 (18.63) 29.36 < 0.001 *
4,5 S.Few 18.4 (23.94) 26.09 (18.22) 0.63 0.43

1,5 Instructor.RtW 29.57 (57.35) 5.5 (13.43) 21.12 < 0.001 *
1,5 Instructor.DV 1.52 (6.39) 1.92 (7.33) 0.13 0.72
1,5 Instructor.FUp 9.27 (14.57) 30.91 (20.42) 58.34 < 0.001 *
1,5 Instructor.AnQ 8.55 (12.06) 7.42 (8.11) 0.22 0.64
1,5 Instructor.MG 0.00 (1.61) 17.07 (18.83) 55.99 < 0.001 *

1,3,5 Instructor.Adm/ 4.74 (5.17) 13.69 (9.47) 61.38 < 0.001 *
I.Administration

1,5 Instructor.W 0.00 (1.68) 3.92 (7.47) 22.79 < 0.001 *
1,5 Instructor.O 0.00 (1.55) 1.66 (5.98) 13.95 < 0.001 *

1,2,5 Instructor.Lec 87.73 (13.57) 47.08 (17.44) 189.11 < 0.001 *
1,2,5 Instructor.PQ 10.79 (19.04) 25.00 (17.12) 2.12 0.15
1,2,5 Instructor.CQ 0.00 (7.46) 9.49 (19.22) 17.63 < 0.001 *
1,2,5 Instructor.1o1 0.00 (0.00) 5.44 (8.56) 31.26 < 0.001 *
3,4,5 I.Presenting/ 90.35 (11.04) 55.85 (23.96) 181.05 < 0.001 *

I.Minimal
3,5 I.Guiding 37.39 (32.7) 72.75 (16.82) 50.66 < 0.001 *
3,5 I.Other 1.54 (3.85) 8.93 (14.03) 36.57 < 0.001 *
4,5 I.Interactive 0.00 (3.02) 20.00 (17.88) 61.10 < 0.001 *
4,5 I.Thinking 17.97 (24.26) 37.95 (14.53) 14.45 < 0.001 *
4,5 I.Few 19.04 (17.00) 38.47 (19.13) 37.46 < 0.001 *
4,5 I.Miscellaneous 6.72 (7.71) 23.64 (13.11) 91.42 < 0.001 *
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While examining the individual codes helps us consider the impact of an
individual code, many of the COPUS codes overlap and are not independent
of one another. For this reason, we used robust cluster ensemble methods to
obtain a cluster assignment for each course (active-learning and traditional-
lecture cluster). Rather than conducting analyses on the individual codes, we
modeled the likelihood of an instructor falling within a certain cluster, i.e. being
classified as traditional lecture or active learning, after accounting for other
instructor and classroom variables. The odds of being in the active-learning
cluster compared to the traditional-lecture cluster are presented in (Table 6-8).
In the context of interpreting the odds ratios of the logistic regression model,
all other variables in the model are assumed to be held constant. Table 6
presents the results of the logistic regression models with all of our instructor
variables (faculty type, faculty rank, years of teaching, gender) and classroom
variables (campus, discipline, and class size) as inputs and the odds of being
in the active-learning cluster (based on the final cluster assignment) as the
response (see supplemental materials for alternative models, Table S27-S31).
The logistic regression model with all of our instructor (faculty type, faculty
rank, years of teaching, and gender) and classroom (campus, discipline, and
class size) characteristics as well as the 2-way interactions between faculty
type and faculty rank, years of teaching, gender, discipline, and class size did
not yield an improved model and can be found in Table 7. Table 8 displays
the final model after using best subsets logistic regression (choosing the best
model based on the AIC criterion) with the response as the odds of being
in the active-learning cluster (based on the final cluster assignment) and all
possible combinations and subsets of instructor and classroom characteristics
as the inputs. There is no difference in the odds of an instructor falling in the
active-learning cluster when comparing teaching faculty and non-tenure track
lectures. However, we we see that TP/PoTs are more likely to be in the active-
learning cluster compared to tenure-track research-focused faculty, with the
odds being significantly less than one.

4.2 RQ2: What instructor and classroom characteristics
correlate with active-learning?

Not all of the instructor and classroom characteristics are significant in pre-
dicting whether or not a faculty member ended up in the active-learning cluster
(Table 6). By minimizing the AIC, we obtained the final logistic regression
model (Table 8). In the final model, campus, discipline, and class size are also
associated with changes in the odds of being in the active-learning cluster com-
pared to the traditional-lecture cluster in addition to faculty type. Campus 3
was more likely to have instructors who adopt active-learning strategies rela-
tive to Campus 2. Physical Sciences classes tend to have instructors who teach
less actively compared to Biological Sciences. Smaller class sizes also tend to
have instructors who teach more actively. These results potentially relate to
how people and power are interconnected and are further elaborated on in the
Discussion section.



20 Implementation of Active Learning by Tenure-Track Teaching Faculty

Table 6 Logistic Regression Model for Active-Learning Cluster. The coefficients represent
the increase/decrease in the odds of being in the active-learning cluster (based on the final
cluster assignment) for each of the variables of interest (while holding the other variables
in the model constant). The reference group (RG) are labeled for each of the categorical
variables.

Estimated 95% Confidence Test
Odds Interval Statistic p-value

Intercept 7.27 (1.15, 45.95) 2.11 0.04 *
Faculty Type

RG: Teaching Faculty
Research Faculty 0.28 (0.08, 0.93) -2.08 0.04 *
Lecturers 0.46 (0.13, 1.60) -1.22 0.22

Faculty Rank
RG: Assistant
Associate 0.53 (0.13, 2.12) -0.90 0.37
Full 0.72 (0.14, 3.78) -0.39 0.69

Years of teaching 1.03 (0.95, 1.13) 0.74 0.46
Gender

RG: non-female
Female 1.67 (0.60, 4.61) 0.98 0.33

Campus
RG: Campus 3
Campus 2 0.19 (0.04, 0.98) -1.98 0.05 *
Campus 1 2.21 (0.39, 12.60) 0.89 0.37

Discipline
RG: Biological Sciences
Engineering 0.33 (0.07, 1.54) -1.41 0.16
I&C Sciences 0.59 (0.14, 2.50) -0.72 0.47
Physical Sciences 0.12 (0.03, 0.52) -2.86 < 0.01 *

Class Size
RG: Small (0-99)
Medium (100-199) 0.15 (0.04, 0.57) -2.80 0.01 *
Large (200+) 0.25 (0.08, 0.80) -2.33 0.02 *

AIC = 149.58
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Table 7 Logistic Regression Model for Active-Learning Cluster with 2-Way Interactions.
The coefficients represent the increase/decrease in the odds of being in the active-learning
cluster (based on the final cluster assignment) for each of the variables of interest (while
holding the other variables in the model constant). The reference group (RG) are labeled
for each of the categorical variables. The 2-way interactions between faculty type and
instructor characteristics as well as faculty type and classroom characteristics are included
in the model.

Estimated 95% Confidence Test
Odds Interval Statistic p-value

Intercept 12.86 (0.32, 520.67) 1.35 0.18
Faculty Type

RG: Teaching Faculty
Research Faculty 0.65 (0.01, 75.30) -0.18 0.86
Lecturers 0.06 (0.00, 6.19) -1.18 0.24

Faculty Rank
RG: Assistant
Associate 0.96 (0.10, 9.29) -0.03 0.97
Full 1.66 (0.09, 31.54) 0.34 0.74

Years of teaching 1.03 (0.88, 1.21) 0.42 0.68
Gender

RG: non-female
Female 1.67 (0.60, 4.61) 0.98 0.33

Campus
RG: Campus 3
Campus 2 0.31 (0.05, 1.97) -1.24 0.22
Campus 1 2.74 (0.28, 27.08) 0.86 0.39

Discipline
RG: Biological Sciences
Engineering 0.13 (0.00, 3.48) -1.22 0.22
I&C Sciences 0.09 (0.01, 1.48) -1.69 0.09
Physical Sciences 0.07 (0.01, 0.90) -2.05 0.04 *

Class Size
RG: Small (0-99)
Medium (100-199) 0.14 (0.01, 1.68) -1.55 0.12
Large (200+) 0.17 (0.02, 1.40) -1.65 0.10

Interactions: Research Faculty and
Associate 2.11 (0.03, 148.10) 0.34 0.73
Full 1.43 (0.02, 88.38) 0.17 0.86
Female 0.34 (0.02, 6.93) -0.70 0.48
Years of Teaching 0.87 (0.68, 1.11) -1.13 0.26
Engineering 4.19 (0.08, 207.84) 0.72 0.47
I&C Sciences 18.40 (0.51, 658.40) 1.60 0.11
Physical Sciences 0.98 (0.02, 49.87) -0.01 0.99
Medium (100-199) 0.29 (0.01, 13.66) -0.63 0.53
Large (200+) 0.82 (0.04, 18.57) -0.13 0.90

Interactions: Lecturers and
Associate 0.04 (0.00, 8.82) -1.16 0.25
Full – – – –
Female 1.93 (0.06, 58.23) 0.38 0.71
Years of Teaching 1.17 (0.83, 1.64) 0.90 0.37
Engineering 2.73 (0.03, 274.25) 0.43 0.67
I&C Sciences 12.54 (0.34, 462.56) 1.37 0.17
Physical Sciences 0.77 (0.01, 54.78) -0.12 0.90
Medium (100-199) 2.03 (0.05, 80.35) 0.38 0.71
Large (200+) 1.77 (0.07, 46.38) 0.34 0.73

AIC = 172.59
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Table 8 Final Logistic Regression Model for Active-Learning Cluster. The final model
was found by using best subsets logistic regression to model the log odds of the
active-learning cluster (based on the final cluster assignment) and all possible subsets of
the instructor (faculty type, faculty rank, years of teaching, gender) and classroom
(campus, discipline, and class size) characteristics. The coefficients represent the
increase/decrease in the odds of being in the active-learning cluster for each of the
variables of interest (while holding the other variables in the model constant). The
reference group (RG) are labeled for each of the categorical variables.

Estimated 95% Confidence Test
Odds Interval Statistic p-value

Intercept 9.78 (2.19, 43.69) 2.99 < 0.01 *
Faculty Type

RG: Teaching Faculty
Research Faculty 0.28 (0.10, 0.79) -2.39 0.02 *
Lecturers 0.47 (0.15, 1.50) -1.28 0.20

Campus
RG: Campus 3
Campus 2 0.19 (0.04, 0.92) -2.06 0.04 *
Campus 1 2.56 (0.53, 12.42) 1.17 0.24

Discipline
RG: Biological Sciences
Engineering 0.29 (0.07, 1.23) -1.67 0.09
I&C Sciences 0.56 (0.14, 2.24) -0.81 0.42
Physical Sciences 0.13 (0.03, 0.54) -2.84 < 0.01 *

Class Size
RG: Small (0-99)
Medium (100-199) 0.14 (0.04, 0.51) -2.98 < 0.01 *
Large (200+) 0.26 (0.08, 0.82) -2.30 0.02 *

AIC = 143.47
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5 Discussion

Our findings show that TP/PoTs are more likely to be in the active-learning
cluster (i.e. teach with more active-learning strategies) compared to tenure-
track research-focused faculty. These findings are based on leveraging a
robust clustering methodology of COPUS observations across 3 campuses and
strongly support the hypothesis that the structure of the TP/PoT position
makes a difference in the instructional practices being implemented in the
classroom. In particular, TP/PoTs are more likely to spend class time mov-
ing and guiding students in active-learning tasks and have more one-on-one
extended discussion with students. Consistent with existing literature (Smith
et al., 2013), these instructor behaviors correlate with students spending more
time engaging in individual thinking and group activities.

This finding is unlikely to be merely the result of the TP/PoT posi-
tion being teaching-intensive. Previous studies found that the proportion of
an instructor’s academic appointment devoted to teaching positively corre-
lates with the implementation of active-learning strategies (Ebert-May et al.,
2011), whereas the level of research activity negatively correlates with the
implementation of active-learning strategies (Apkarian et al., 2021). Such
a direct correlation would imply that non-tenure-track lecturers should be
most likely to implement active-learning strategies because 100% of their aca-
demic appointment is devoted to teaching. Instead, we found that TP/PoTs,
who do less teaching and more research, are no more or less likely than
non-tenure-track lecturers to be classified in the active-learning cluster.

It remains unclear what other factors contribute to TP/PoTs teaching
more actively. Within the UC system, TP/PoTs as a structure differ from non-
tenure-track lecturers by a number of important features. While we are not
able to disentangle how these different factors may contribute to the imple-
mentation of active learning in our study context, our findings combined with
previous research suggest which features may be most relevant. One feature is
that TP/PoTs are tenure-track faculty and voting members of the Academic
Senate (University of California Office of the President, 2018). While some
might argue that the security of employment that comes with tenure could
potentially allow TP/PoTs to use newer pedagogical methods such as active
learning, neither previous research nor our results support that. A recent large-
scale survey study found that security of employment (defined as “promotion
that comes with increased security of employment,” which does not necessarily
equal tenure) does not show a correlation with percentage of class time spent
on lecturing (Apkarian et al., 2021). Another feature of TP/PoTs is that they
are charged to engage in scholarship (e.g. DBER and curriculum development)
and service that is often related to the educational mission of their depart-
ment and campus (Harlow et al., 2021, 2020a). The same survey study also
found that exposure to education projects and active learning decreases self-
reported time spent on lecturing in undergraduate STEM courses (Apkarian et
al., 2021). Our results are consistent with a model in which TP/PoTs engage
in DBER and evidence-based curriculum development, which exposes them to



24 Implementation of Active Learning by Tenure-Track Teaching Faculty

education projects and active learning through these professional activities,
which influences them to use active-learning strategies. While our work sug-
gests that TP/PoTs represent a potential means to increase implementation of
active-learning strategies in undergraduate STEM education, more research is
needed to identify which features of this position correlate best with teaching
style.

Our results imply that individuals have the agency to implement active-
learning strategies regardless of the structure of their position. Despite the
result that TP/PoTs are more likely to be in the active-learning cluster, not
all TP/PoTs are in the active-learning cluster. Similarly, not all tenure-track
research-focused faculty and non-tenure-track lecturers are in the traditional-
lecture cluster. Furthermore, consistent with existing literature (Stains et al.,
2018), our findings suggest that most undergraduate STEM instructors are still
teaching using traditional lecture-based instruction, and adoption of active-
learning strategies remains low. Therefore, the structure of TP/PoT alone –
or even coupled with the agency of individual people – is not sufficient for
widespread implementation of evidence-based instructional practices.

In addition, we found that discipline, campus and class size increased
the likelihood of an instructor being classified in the active-learning clus-
ter, whereas faculty rank, years of teaching experience, and gender did not
have such an impact. In contrast to our results, a previous study using the
Reformed Teaching Observation Protocol (RTOP) found that years of teach-
ing experience negatively correlated with the implementation of active-learning
strategies (Ebert-May et al., 2011). Faculty rank and years of teaching experi-
ence can both indirectly represent power, and one might expect that these two
characteristics should be correlated, i.e. people with more years of teaching
experience being promoted through the faculty ranks. One might expect that
faculty rank and years of teaching experience should be correlated, i.e. people
with more years of teaching experience being promoted through the faculty
ranks. While years of experience was similar when comparing the traditional
and active cluster, we note that the majority of the active-learning cluster con-
sisted of faculty at the Assistant Professor rank. Therefore, faculty ranks may
represent changing expectations of the TP/PoT position in our study context.

Previous studies have found differing results on whether class size matters
for implementation of active-learning strategies (Ebert-May et al., 2011; Stains
et al., 2018). Our study contributes to this existing literature, as we found
that smaller class sizes positively correlates with the implementation of active-
learning strategies in our study context. Together, our results and the existing
literature may suggest that class size alone is not sufficient to predict or support
the implementation of active-learning strategies.

Classrooms are situated in larger contexts such as campuses, and our results
suggest that campus can potentially influence the implementation of active-
learning strategies. While all study campuses have professional development
opportunities for instructors, Campus 3 has additional unique contexts with
initiatives related to active learning described in the Methods section which
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may have resulted in more teaching pedagogy training compared to Campus
2. The initiatives at Campus 3 could potentially serve as a model for other
campuses for improving their courses through increased implementation of
active learning and evidence-based instructional practices.

5.1 Limitations and Future Directions

We acknowledge that this work contains certain limitations. First, because of
the labor-intensive nature of COPUS and our desire to observe a large num-
ber of courses, we could only sample a small proportion of the class sessions of
each course. At the time of data collection, it was typical in the literature to
only collect a week’s worth of observations (2-3 class sessions) to characterize
instructional practice (e.g. in Stains et al, 2018). However, several studies since
then have shown that to characterize the teaching styles of individual instruc-
tors, it is necessary to observe them as many as 9-11 times because instructors
display a lot of variability session-to-session in how they teach (Sbeglia et al.
2021, Weston et al. 2021). Thus, we cannot make claims about the styles of
individual instructors, only about the likelihood of general classes of instruc-
tors (TP/PoTs, etc.) to teach in certain ways. However, we recognize that more
classroom observations could potentially demonstrate additional instructional
variability and increase reliability (Goodridge, Gordon, Nehm, & Sbeglia, 2020;
Stains et al., 2018). In future, we plan to complement COPUS with other
classroom observation protocols that are easier to deploy for intensive sam-
pling. For example, Decibel Analysis for Research in Teaching (DART) uses
classroom recordings to determine the percentage of time spent with single
voice (traditional lecture) or multiple or no voice (active learning) (Owens et
al., 2017). While DART gives less detail about classroom activities, it is more
automated so that we can more fully sample our courses.

Second, COPUS provides a limited lens for understanding instructional
practices. While COPUS allows observers to quantify the time spent on var-
ious instructor and student behaviors occurring in the classroom, it does not
examine the quality of these activities. COPUS also does not capture instruc-
tional practices that happen outside of the classroom, such as out-of-class
assignments. A number of instruments have been developed over the years to
document active learning in undergraduate STEM education, including reli-
able and validated self-report surveys, interviews, and classroom observation
protocols (American Association for the Advancement of Science, 2013). The
most direct approach to measure active learning is through classroom obser-
vations where trained observers document instructional practices in real time
or via audio or video recordings (American Association for the Advancement
of Science, 2013). There are several self-report instruments that are often used
to measure active-learning strategies, including the Approaches to Teaching
Inventory (ATI) (Trigwell & Prosser, 2004), the Teaching Practices Inventory
(TPI) (C. Wieman & Gilbert, 2014), and the Postsecondary Instructional Prac-
tices Survey (PIPS) (Walter, Henderson, Beach, & Williams, 2016). However,
there is a significant discrepancy between the degree to which faculty members
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report using active learning versus levels of active learning observable in video
recordings of their classrooms (Ebert-May et al., 2011). Additionally, a multi-
institutional study of introductory biology courses found that self-reports of
active learning instruction were not associated with higher student learn-
ing gains (Andrews, Leonard, Colgrove, & Kalinowski, 2011). Well-developed
classroom observation protocols are often perceived as more objective than
self-reported survey or interview data supplied by faculty members (American
Association for the Advancement of Science, 2013). There are holistic obser-
vation protocols, like the Reformed Teaching Observation Protocol (RTOP)
(Piburn et al., 2000), where the observer watches an entire class session and
then rates each item with regard to the lesson as a whole. While holistic pro-
tocols, like RTOP, are widely used for detecting the degree to which classroom
instruction uses student-centered, engaged learning practice, observers have
to spend many hours to achieve high levels of inter-rater reliability (Piburn
et al., 2000). The Classroom Discourse Observation Protocol (CDOP) could
be used to evaluate the quality of instructional practices especially in rela-
tion to teacher discourse moves or the content-related conversations initiated
by instructors (Kranzfelder et al., 2019). Also, content analysis of syllabus
(Doolittle & Siudzinski, 2010) and survey instruments, such as the Teaching
Practices Inventory (C. Wieman & Gilbert, 2014), could be used to examine
instructional practices outside of the classroom.

Third, there are undoubtedly many instructor and demographic charac-
teristics that we did not capture that are important for understanding the
people and why particular individual instructors choose the teaching strategies
they use. For demographic characteristics, we could only obtain gender of the
instructors. Other instructor characteristics we would like to obtain for future
research is, for example, pedagogical training (which may be a factor associated
with active learning). Although only a small percentage of TP/PoTs have had
formal training in education (nearly all have a PhD in their STEM discipline
instead), the vast majority have participated in teaching-related professional
development (Harlow, Lo, Saichaie, & Sato, 2020b). Such professional develop-
ment may make them more likely to use active-learning pedagogical strategies.
Similarly, we also have a limited understanding of instructor’s thoughts and
beliefs about teaching and learning, which also are likely to influence their
teaching practices. In our future work, we hope to capture a fuller picture of
instructors and link their beliefs and training to their teaching practices.

Fourth, while understanding what instructor and classroom characteristics
influence instructional practice is important, it is also important to link these
practices to student outcomes (which were not collected for this study). While
there is still much work to be done to associate particular active-learning
strategies with specific student outcomes (C.E. Wieman, 2014), there have
been no shortage of studies that associate active-learning strategies in general
with better outcomes (Braxton et al., 2008; Freeman et al., 2014; Prince, 2004;
Ruiz-Primo, Briggs, Iverson, Talbot, & Shepard, 2011; Springer, Stanne, &
Donovan, 1999; Theobald et al., 2020). Our future work seeks to connect the
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instructor and classroom characteristics that influence instructional practices
to student outcomes such as increased retention in STEM.

Finally, as with any study, our findings may not apply to other institu-
tions, especially those that are substantially different from the ones analyzed
here. Each university system, university, and department has its own history,
politics, and culture around teaching, hiring, and evaluation. However, our
study does include 18 departments across three universities, and many of the
conclusions are consistent across those three universities. Although we cannot
claim our findings are generalizable beyond the UC system, we demonstrate a
possible outcome of having tenure-track education-focused faculty in hopes of
inspiring more research about the impacts of this increasingly large group of
instructors.

6 Conclusion

Our study has broader implications for the use of education-focused academic
positions as a structure for increasing the implementation of active-learning
strategies in undergraduate STEM education. Even though our research
focuses on TP/PoTs, there are other positions across different university sys-
tems that may have similar roles and thus potential impacts. For example,
SFES (Bush, Stevens, Tanner, & Williams, 2020), first described in the context
of the California State University system, is a heterogeneous group of faculty in
tenure-track and non-tenure track positions focusing on a variety of teaching-
centered endeavors, including K-12 science education, DBER, the scholarship
of teaching and learning, and undergraduate science education reform (Bush et
al., 2006, 2011, 2013, 2015). Canadian universities employ permanent faculty
called TFF who are involved in a combination of teaching, service, research,
and other scholarly activities (Rawn & Fox, 2018).

While both SFES and TFF self-report knowledge of evidence-based instruc-
tional practices and/or engage in DBER (Bush, Rudd II, Stevens, Tanner,
& Williams, 2016; Bush et al., 2020; Rawn & Fox, 2018), our work is the
first to identify through classroom observations that individuals within these
education-focused academic positions who are more likely to implement active-
learning strategies. These results serve as a baseline for further studies that
can examine if TP/PoTs serve as change agents within their departments, not
only by implementing active-learning strategies in their own classrooms but
also by potentially influencing their departmental colleagues’ teaching through
formal and informal interactions. In other existing studies, SFES self-report
and consider departmental change as one of their important impacts (Bush et
al., 2016; Bush, Stevens, Tanner, & Williams, 2019). Therefore, adding simi-
lar studies on departmental change within the TP/PoTs context could further
shed light on how education-focused academic positions more broadly may
function in undergraduate STEM education.

This work highlights the use of a robust clustering methodology. As clusters
can change with new data and new algorithms, using an ensemble improves
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the accuracy over a single classifier Moon et al. (2007). The methodology
applied in this paper does not rely on a single set of COPUS codes, single clus-
tering algorithm, single clustering ensemble, or single internal index. Instead
we leverage the information from multiple COPUS datasets, carry out multi-
ple clustering algorithms (with the cluster size varying), pool together cluster
assignments using multiple ensembles, and use majority voting from each of
the best ensembles to identify the final clusters that were used to address our
research questions about the implementation of active learning by tenure-track
teaching faculty.
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7 Figures
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Fig. 1 Robust ensemble clustering process.
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Appendix A Abbreviations

COPUS Classroom Observation Protocol for Undergraduate STEM; CSPA
Cluster-based Similarity Partitioning Algorithm; DART Decibel Analysis for
Research in Teaching; DBER Discipline-Based Education Research; I&C
Sciences Information and Computer Sciences; Instructor.Lec Instructor
lecturing (presenting content, deriving mathematical results, presenting a
problem solution, etc.); Instructor.RtW Instructor real-time writing on
board, doc. projector, etc.; Instructor.DV Instructor showing or conduct-
ing a demo, experiment, simulation, video, or animation; Instructor.FUp
Instructor follow-up/feedback on clicker question or activity to entire class;
Instructor.PQ Instructor posing non-clicker question to students (non-
rhetorical); Instructor.CQ Instructor asking a clicker question; Instruc-
tor.TAnQ Instructor listening to and answering student questions with entire
class listening; Instructor.MG Instructor moving through class guiding
ongoing student work during active learning task; Instructor.1o1 Instruc-
tor one-on-one extended discussion with one or a few individuals, not
paying attention to the rest of the class; Instructor.Adm Instructor admin-
istration (assign homework, return tests, etc.); Instructor.W Instructor
waiting when there is an opportunity for an instructor to be interacting
with or observing/listening to student or group activities and the instruc-
tor is not doing so; Instructor.O Instructor other activities; I.Presenting
Instructor presenting collapsed code (Instructor.Lec, Instructor.RtW, and
Instructor.DV combined, same as I.Minimal); I.Guiding Instructor guid-
ing collapsed code (Instructor.FUp, Instructor.PQ, Instructor.CQ, Instruc-
tor.AnQ, Instructor.MG, and Instructor.1o1 combined); I.Administration
Instructor administration collapsed code (same as Instructor.Adm); I.Other
Instructor other collapsed code (Instructor.W and Instructor.Other combined);
I.Interactive Instructor interactive novel code (Instructor.MG and Instruc-
tor.1o1 combined); I.Thinking Instructor promoting individual thinking novel
code (Instructor.PQ and Instructor.CQ combined); I.Few Instructor attend-
ing to one or few students novel code (Instructor.FUp and Instructor.AnQ
combined); I.Minimal Instructor minimal interactions novel code (Instruc-
tor.Lec, Instructor.RtW and Instructor.DV combined, same as I.Presenting);
I.Miscellaneous Instructor miscellaneous novel); LCE Linkage Clustering
Ensemble; PAM Partitioning Around Medoids; RQ Research Questions;
SATAL Students Assessing Teaching and Learning; SFES Science Faculty
with Education Specialties; STEM science, Technology, Engineering, and
Mathematics; Student.L Student listening to instructor/taking notes, etc.;
Student.AnQ Student answering a question posed by the instructor with
rest of class listening; Student.SQ Student asks question; Student.WC Stu-
dents engaged in whole class discussion by offering explanations, opinion,
judgment, etc. to whole class, often facilitated by instructor; Student.SP
Student(s) presentation; Student.Ind Student individual thinking/problem
solving when an instructor explicitly asks students to think about a clicker
question or another question/problem on their own; Student.CG Students
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discuss clicker question in groups; Student.WG Students working in groups
on worksheet activity; Student.OG Student assigned group activity, such
as responding to instructor question; Student.Prd Student(s) make a pre-
diction about the outcome of demo or experiment; Student.TQ Student
take a test or quiz; Student.W Students waiting (instructor late, working
on fixing AV problems, instructor otherwise occupied, etc.); Student.O Stu-
dent other activities; S.Receiving Students receiving collapsed code (same
as Student.L and S.Minimal); S.Working Student working collapsed code
(Student.Ind, Student.CG, Student.WG, Student.OG, and Student.Prd com-
bined); S.Talking Student talking collapsed code (Student.AnQ, Student.SQ,
Student.WC, Student.SP combined); S.Other Student other collapsed code
(Student.W and Student.Other combined, same as student other novel code);
S.Interactive Student interactive novel code (Student.CG, Student.WG,
and Student.OG combined); S.Thinking Student thinking novel code (Stu-
dent.Ind, Student.Prd, and Student.CQ); S.Few Student one or a few students
interacting with the instructor or class novel code (Student.AnQ, Student.SQ,
and Student.SP combined); S.Minimal Student minimal interaction novel
code (same as Student.L and S.Receiving); S.Other Student other collapsed
and novel code (Student.W and Student.Other combined); TP/PoT Teach-
ing Professor or Professor of Teaching; TFF Teaching Focused Faculty; UC
University of California
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